期刊文献+

基于最小二乘支持向量机的铣削加工表面粗糙度预测模型 被引量:27

A Prediction Model for Surface Roughness in Milling Based on Least Square Support Vector Machine
下载PDF
导出
摘要 在分析以往所建立的表面粗糙度预测模型方法不足的基础上,将一种基于最小二乘支持向量机的预测模型引入铣削加工领域,并给出了相应的步骤和算法。该模型能方便地预测铣削加工参数对加工表面粗糙度的影响,并能利用有限的试验数据得出整个工作范围内的表面粗糙度预测值,有助于准确认识已加工表面质量随铣削参数的变化规律。通过具体实例及与其他几种预测方法的对比表明,在相同样本条件下,其模型构造速度比标准支持向量机方法高1~2个数量级,模型预测误差约为支持向量机方法的40%,预测精度比常规BP模型高1个数量级。因此,基于最小二乘支持向量机方法建模速度快、预测精度高、适合加工表面粗糙度预测。 A novel prediction model based on least square support vector machine (LS-SVM) was proposed. Based on the new model, the design steps and learning algorithm were given. The practical experimental results show that the construction speed of this LS-SVM model is 10 or 100 times less than that of the SVM model, while the prediction errors are 60%. Moreover, compared with BP model,the prediction accuracy is about 10 times higher than that of the former. The effects of milling parameters on surface roughness in milling can be predicted with the limited test data, thus the variation law of quality of machined surface following milling parameters can be obtained.
作者 吴德会
机构地区 九江学院
出处 《中国机械工程》 EI CAS CSCD 北大核心 2007年第7期838-841,共4页 China Mechanical Engineering
基金 国家自然科学基金资助项目(70272032)
关键词 表面粗糙度 预测模型 最小二乘支持向量机 铣削 surface roughness prediction model least square support vector machine milling
  • 相关文献

参考文献15

二级参考文献25

  • 1Zhang K, Butler C. A Fiber Optic Sensor for Measurement of Surface Roughness and Displacement Using Artificial Neural Networks. IEEE Transactions on Instrument and Measurement, 1997, 46(4) :899-902. 被引量:1
  • 2Li Guofa,Wang Longshan. Multi-parameter Optimization and Control of the Cylindrical Grinding Process. Journal of Materials Processing Technology, 2002, 29(1 3):232-236. 被引量:1
  • 3Schlkopf B,Smola A J,Williamson R C,et al.New Support Vector Algorithms.Neural Computation,2000,12(5):1207-1245. 被引量:1
  • 4Sun Z H,Sun Y X.Fuzzy Support Vector Machine for Regression Estimation.IEEE International Conference on Systems,Man and Cybernetics,2003,4:3336-3341. 被引量:1
  • 5Lin C F,Wang S D.Fuzzy Support Vector Machines.IEEE Transactions on Neural Networks,2002,13(2):464-471. 被引量:1
  • 6Hong D H,Hwang C.Support Vector Fuzzy Regression Machines.Fuzzy Sets and Systems,2003,138(2):271-281. 被引量:1
  • 7Diamond P,Kloeden P.Metric Spaces of Fuzzy Sets.Singapore:World Scientific Press,1994. 被引量:1
  • 8Wang X,Feng Jack C X.Development of Empirical Models for Surface Roughness Prediction in Fish Turning.Int.J.Adv.Manuf.Tech.,2002,20(5):348-356. 被引量:1
  • 9Alauddin M,El Baradie M A,Hashmi M S J.Optimization of Surface Finish in End Milling Inconel 718.Journal of Materials Processing Technology,1996,56(1-4):54-65. 被引量:1
  • 10Benardos P G,Vosniakos G C.Prediction of Surface Roughness in CNC Face Milling Using Neural Networks and Taguchi's Design of Experiments.Robotics and Computer-Integrated Manufacturing,2002,18(5-6):343-354. 被引量:1

共引文献97

同被引文献218

引证文献27

二级引证文献141

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部