期刊文献+

基于进化神经网络的曲面磨削表面粗糙度预测 被引量:14

Prediction of the Surface Roughness in Curve Grinding Based on Evolutionary Neural Networks
下载PDF
导出
摘要 将人工神经网络技术引入曲面磨削加工领域,介绍了利用BP算法建立的曲面磨削表面粗糙度随磨削用量变化的进化神经网络预测模型.针对BP算法存在收敛速度慢、容易陷入局部极小值及全局搜索能力弱等缺陷,采用遗传算法训练BP神经网络,取代了一些传统的学习算法,设计了基于进化神经网络的学习算法.实验和仿真结果表明,基于进化计算的BP神经网络不仅可以克服单纯使用BP网络易陷入局部极小等问题,而且预测精度较高. Artificial neural networks were introduced in the area of curve grinding. The prediction model of surface roughness in curve grinding based on back propagation (BP) algorithm was proposed. There are some disadvantages in BP algorithm, such as low rate of convergence, easily falling into local minimum point and weak global search capability. In order to settle these problems, a genetic algorithm was used to train BP neural network to replace classical learning algorithms. An evolutionary neural network learning algorithm was founded. The results of simulations and experiments show that the evolutionary neural network based genetic algorithm can effectively overcome the problem of falling into local minimum point. This method can get higher accuracy of predictions.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2005年第3期373-376,共4页 Journal of Shanghai Jiaotong University
基金 上海市科委重点科技资助项目(021111125)
关键词 进化神经网络 遗传算法 曲面磨削 表面粗糙度 预测 Backpropagation Evolutionary algorithms Genetic algorithms Learning algorithms Neural networks Predictive control systems Surface roughness
  • 相关文献

参考文献7

  • 1袁哲俊,王先逵主编..精密和超精密加工技术[M].北京:机械工业出版社,1999:228.
  • 2刘增良,刘有才著..模糊逻辑与神经网络 理论研究与探索[M].北京:北京航空航天大学出版社,1996:374.
  • 3李建珍.基于遗传算法的人工神经网络学习算法[J].西北师范大学学报(自然科学版),2002,38(2):33-37. 被引量:38
  • 4Ben Fredj N, Amamou R, Rezgui M A. Surface roughness prediction based upon experimental design and neural network models [A]. IEEE International Conference on Systems, Man and Cybernetics [C].Tunisia: IEEE, 2002. 752-756. 被引量:1
  • 5Zhang K, Butler C, Yang Q, et al. A fiber optic sensor for the measurement of surface roughness and displacement using artificial neural networks [J]. IEEE Transactions on Instrumentation and Measurement,1997, 46(4): 899-902. 被引量:1
  • 6Gott R M, Martinez A B. Estimation of composite roughness model parameters via a backpropagation neural network [A]. Proceedings of the 37th Midwest Symposium on Circuits and Systems [C]. Lafayette:IEEE, 1994. 581-586. 被引量:1
  • 7皮亦鸣,付毓生,黄顺吉.采用进化计算的BP神经网络学习算法研究[J].信号处理,2002,18(3):261-264. 被引量:5

二级参考文献5

  • 1[1]D.J.Montana, et al, "Training feedforward neural network using genetic algorithm", Proceedings of the Eleventh International Joint Conference on Artificial Intelligence,pp. 762-767, 1989. 被引量:1
  • 2[2]D.E. Rumelhart, et al, "Learning internal representations by error propagation", Parallel Distributed Processing,Vol. l, pp.318-362, D. E. Rumelhart and J. L. McCleland,Eds. MIT Press, USA, 1986. 被引量:1
  • 3[3]M. Baba, "A new approach for finding the global minimum of error function of neural networks", Neural Networks, Vol.2, pp.367-373, 1989. 被引量:1
  • 4郑南宁.计算机视觉与模式识别[M].北京:人民邮电出版社,1996.. 被引量:1
  • 5王磊,戚飞虎.进化计算在神经网络学习中的应用[J].计算机工程,1999,25(11):41-43. 被引量:17

共引文献41

同被引文献117

引证文献14

二级引证文献117

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部