期刊文献+

基于ANFIS的铝合金铣削加工表面粗糙度预测模型研究 被引量:17

Prediction of Surface Roughness of Milling Aluminium Alloy Based on ANFIS
下载PDF
导出
摘要 分析以往建立表面粗糙度预测模型方法的不足,采用自适应神经模糊推理系统(ANFIS)建立了铝合金铣削加工表面粗糙度预测模型。经检验,该模型预测精度高,泛化能力强,且可简便预测铣削参数对已加工表面的表面粗糙度的影响,有助于准确认识已加工表面质量随铣削参数的变化规律,为切削参数的优选和表面质量的控制提供了依据。 Based on analyzing the shortcomings of the past methods of building a surface roughness prediction model, ANFIS (adaptive-network-based fuzzy inference system) was adopted to build a prediction model of surface roughness for milling aluminium alloy. Through the verification of the built prediction model of surface roughness, it has been found that the prediction accuracy and generalization of the model are very high and the model conveniently predicts the effects of milling parameters on surface roughness of machined surface, which contributes to accurately understand the variation law of quality of machined surface following milling parameters and provides the foundation for properly selecting cutting parameters and controlling surface quality.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2005年第6期475-479,共5页 China Mechanical Engineering
基金 国家自然科学基金资助项目(50175051)
关键词 自适应神经模糊推理系统(ANFIS) 表面粗糙度 预测 铣削 adaptive-network-based fuzzy inference system surface roughness prediction milling
  • 相关文献

参考文献8

  • 1周泽华主编,于启勋编著..金属切削原理 第2版[M].上海:上海科学技术出版社,1984:300.
  • 2张恒喜 ... ..小样本多元数据分析方法及应用[M],2002.
  • 3Wang X,Feng Jack C X.Development of Empirical Models for Surface Roughness Prediction in Fish Turning.Int.J.Adv.Manuf.Tech.,2002,20(5):348-356. 被引量:1
  • 4Alauddin M,El Baradie M A,Hashmi M S J.Optimization of Surface Finish in End Milling Inconel 718.Journal of Materials Processing Technology,1996,56(1-4):54-65. 被引量:1
  • 5Benardos P G,Vosniakos G C.Prediction of Surface Roughness in CNC Face Milling Using Neural Networks and Taguchi's Design of Experiments.Robotics and Computer-Integrated Manufacturing,2002,18(5-6):343-354. 被引量:1
  • 6Roger Jang J S.ANFIS:Adaptive-network-based Fuzzy Inference System.IEEE Transactionson Systems,Man and Cybernetics,1993,23(3):665-685. 被引量:1
  • 7Roger Jang J S,Sun C T.Neuro-fuzzy Modeling and Control.Proceedings of the IEEE,1995,83(3):378-406. 被引量:1
  • 8Tsai Y H,Chen J C,Lou S J.An Inprocess Surface Recognition System Based on Neural Networks in End Milling Cutting Operations.Int.J.Mach.Tools Manufact.,1999,39(4):583-605. 被引量:1

同被引文献178

引证文献17

二级引证文献125

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部