期刊文献+

基于正交试验和Vogl快速BP网络的球面磨削工艺优化方法 被引量:7

Vogl Fast BP Network and Orthogonal Experiment Method in Optimization of Sphere Grinding Process Parameters
下载PDF
导出
摘要 基于人工神经网络具有良好的非线性逼近特性,以先期人工经验为依据,利用正交试验结果作为神经网络的训练样本,建立改进的Vogl快速BP网络模型,并通过样本检测模型的预测准确度,在正交试验最佳组合处采用小步长搜索方法,结合神经网络模型进一步优化工艺参数.结果表明:结合正交试验,神经网络和先期人工经验进行球面磨削工艺参数优化可以缩短参数优化时间,提高工艺设计效率,改善表面加工质量. According to previous artificial experience, the data from an orthogonal experiment was used as the training sample to establish a neural network model on the basis of neural network's non-linear approach characteristic. An improved fast vogl BP neural network was established and the precision of mode was forecasted through the sample. Then small-step method was used with the best parameter got from orthogonal experiment and technical parameters were further bettered. The result shows that the integration of orthogonal experiment ,ANN and previous artificial experience for sphere grinding greatly increases the technological design efficiency and improves the surface quality.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2009年第12期1956-1961,共6页 Journal of Shanghai Jiaotong University
基金 上海市重大技术装备研制专项基金资助项目(0706014)
关键词 正交试验 神经网络 球面磨削 球面粗糙度 orthogonal experiment neural network sphere grinding sphere roughness
  • 相关文献

参考文献10

  • 1叶伟昌.磨削技术的现状与发展[J].机械科学与技术(江苏),1996,25(1):5-8. 被引量:1
  • 2邓朝晖,程文涛.基于神经网络的成形磨削表面粗糙度的研究[J].机械制造,2006,44(7):39-40. 被引量:13
  • 3张永宏,胡德金,张凯,徐俊杰.基于进化神经网络的曲面磨削表面粗糙度预测[J].上海交通大学学报,2005,39(3):373-376. 被引量:14
  • 4Wen Xiu-lan, Song Ai-guo. An immune evolutionary algorithm for sphericity error evaluation [J]. International Journal of Machine Tools & Manufacture, 2004, 44(10) : 1077-1084. 被引量:1
  • 5陈晓平,胡树根.神经网络与正交试验法结合优化注射工艺参数[J].模具工业,2007,33(7):1-5. 被引量:15
  • 6Liu Xing-fa. Application of neural network and spheric harmonies function to system error correction of eleetro-optieal tracker system with X-Y girnbal [C]//International Symposium on Advanced Optical Manu- facturing and Testing Technologies. Chengdu (CN) : SPIE, 2007: 67221A. 1 - 67221A. 6. 被引量:1
  • 7Zhu Xiartg-yang, Ding Han, Wang M Y. Form error evaluation.. An iterative reweighted least squares algorithm [J]. Journal of Manufacturing Science and Engineering, 2004,126 (3) : 535-541. 被引量:1
  • 8Zhang K, Butler C, Yang Q,etal. A fiber opticsensor for the measurement of surface roughness and displacement using artificial neural networks [J].IEEE Transactions on Instrumentation andMeasurement, 1997, 46(4): 899-902. 被引量:1
  • 9Gott R M, Martinez A B. Estimation of compositeroughness model parameters via a backpropagationneural network [C]//Proeeedings of the 37th Midwest Symposium on Circuits and Systems. Lafayette: IEEE, 1994: 581-586. 被引量:1
  • 10Ben Fredj N, Amamou R, Rezgui M A. Surface roughness prediction based upon experimental designand neural network models [C]//IEEE International Conference on Systems, Man and Cybernetics. Tunisia: IEEE, 2002. 被引量:1

二级参考文献16

共引文献38

同被引文献37

引证文献7

二级引证文献115

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部