期刊文献+

基于模糊基函数网络和自适应最小二乘算法的外圆纵向磨削表面粗糙度的预测 被引量:4

Prediction of Surface Roughness in Cylindrical Traverse Grinding Based on FBFN and ALS Algorithm
下载PDF
导出
摘要 建立了外圆纵向磨削表面粗糙度的模糊基函数网络(FBFN)预测模型,网络的训练采用自适应最小二乘算法(ALS)。ALS将最小二乘算法和遗传算法相结合,能够自主学习,不用人为干预,FBFN和粗糙度的分析模型相结合,只需少量实验数据便可完成网络的训练,自动产生模糊规则,确定隐含层的节点数。仿真和实验结果表明,FBFN网络结构非常适合粗糙度的预测和控制,采用ALS学习方法比BP算法、传统的遗传算法和正交二乘法等能产生更好的结果。 A framework for modeling cylindrical traverse grinding surface roughness using fuzzy basis function neural networks(FBFN) was constructed with adaptive least-square(ALS) training algorithm. The ALS algorithm, based on the least- square method and genetic algorithm(GA), was proposed for autonomous learning and the construction of FBFN without any human intervention. Combining the FBFN with the surface roughness analytical model, the proposed algorithm would add a significant fuzzy basis function node at each iteration during the training process based on error reduction measure. Simulation and experimental studies were performed to demonstrate advantages of the proposed modeling framework with the training algorithm in modeling grinding processes. The resuits indicate that tailors the FNFB to predict and control the surface roughness and the new algorithms generate superior results over conventional algorithms such as backpropagation algorithms and conventional GA-based algorithm.
机构地区 吉林大学
出处 《中国机械工程》 EI CAS CSCD 北大核心 2006年第12期1223-1227,共5页 China Mechanical Engineering
基金 吉林省科技发展计划资助项目(20020632)
关键词 模糊基函数网络 自适应最小二乘法 表面粗糙度预测 外圆纵向磨削 遗传算法 fuzzy basis neural network (FBFN) adaptive least-squares (ALS) prediction of the surface roughness cylindrical traverse grinding genetic algorithm(GA)
  • 相关文献

参考文献7

  • 1Tsai Y H, Chen J C, Lou S J. An In-Process Surface Recognition System Based on Neural Networks in End Milling Cutting Operations. International Journal of Machine Tools & Manufacture, 1999,39(4) : 583-605 被引量:1
  • 2Lee C W, Shin Y C. Construction of Fuzzy Systems Using Least-Squares Method and Genetic Algorithm.Fuzzy Sets and Systems,2003,137(3) :297-323 被引量:1
  • 3Manuel D, Alejandro S, Danilo B. Control of Grinding Plants Using Predictive Multivariable Neural Control. Powder Technology, 2001,115 ( 2 ) : 193-206 被引量:1
  • 4Nandi A K, Pratihar D K. Design of a Genetic-fuzzy System to Predict Surface Finish and Power Requirement in Grinding. Fuzzy Sets and Systems,2004,148(3) :487-504 被引量:1
  • 5ToNshoff H K, Peters J, Inasaki l,et al,Modeling and Simulation of Grinding Processes. Annals of CIRP, 1992,41 (2) :677-688 被引量:1
  • 6李国发,王龙山,丁宁.基于进化神经网络外圆纵向磨削表面粗糙度的在线预测[J].中国机械工程,2005,16(3):223-226. 被引量:34
  • 7[美]马尔金S.磨削技术理论与应用.蔡光起,巩亚东,宋贵亮译.沈阳:东北大学出版社,2002 被引量:1

二级参考文献2

  • 1Zhang K, Butler C. A Fiber Optic Sensor for Measurement of Surface Roughness and Displacement Using Artificial Neural Networks. IEEE Transactions on Instrument and Measurement, 1997, 46(4) :899-902. 被引量:1
  • 2Li Guofa,Wang Longshan. Multi-parameter Optimization and Control of the Cylindrical Grinding Process. Journal of Materials Processing Technology, 2002, 29(1 3):232-236. 被引量:1

共引文献33

同被引文献19

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部