摘要
介绍了遗传算法(GA)和支持向量机(SVM)的基本理论,用遗传算法对支持向量机的结构和参数进行了优化,将该方法用于低阶煤制氢的研究,获得了影响低阶煤制氢产量的主要煤质指标,建立了SVM-GA预测模型。结合34个校验样本的氢产量和相对应的影响因素,对模型的预测效果进行了验证。结果表明:预测值与试验值的平均相对误差为0.209%,误差的均方差为37.88,达到了较高的预测精度。
介绍了遗传算法(GA)和支持向量机(SVM)的基本理论,用遗传算法对支持向量机的结构和参数进行了优化,将该方法用于低阶煤制氢的研究,获得了影响低阶煤制氢产量的主要煤质指标,建立了SVM-GA预测模型。结合34个校验样本的氢产量和相对应的影响因素,对模型的预测效果进行了验证。结果表明:预测值与试验值的平均相对误差为0.209%,误差的均方差为37.88,达到了较高的预测精度。
出处
《煤炭学报》
EI
CAS
CSCD
北大核心
2010年第S1期205-209,共5页
Journal of China Coal Society
基金
国家自然科学基金资助项目(90610014)
山东省自然科学基金资助项目(Q2007B05)
关键词
遗传算法
支持向量机
低阶煤制氢
预测模型
genetic algorithm
support vector machine
hydrogen production from low rank coal
prediction model