期刊文献+

基于局部保序降维的SVDD故障检测方法

Fault Detection Method Based on Local Order-Preserving Dimensionality Reduction and Support Vector Data Description
下载PDF
导出
摘要 针对SVDD方法在训练阶段计算量大、训练时间久的问题,提出了基于局部保持投影支持向量数据描述(LPP-SVDD)的故障检测方法.结合LPP处理线性降维和SVDD在异常点检测的优势,使用LPP算法对原始数据进行维数约减,对降维后的数据采用SVDD算法建立监控模型,在最大程度保留数据局部结构特性的同时达到数据维数约减的目的,从而降低SVDD的计算量,缩短建模及检测时间.通过数值例子和半导体工艺过程进行仿真研究,对比LPP、k NN、SVDD、LPP-SVDD方法,验证所提方法的性能.结果证实了LPP-SVDD不仅具有准确的检测能力,而且具有较高的检测效率. Aiming at the problem of large amount of calculation and long training time in the training phase of SVDD method,a fault detection method based on local preserving projection support vector data description(LPP-SVDD)is proposed.Combined with the advantages of LPP processing linear dimensionality reduction and SVDD in outlier detection,LPP algorithm is used to reduce the dimension of the original data,and SVDD algorithm is used to establish the monitoring model for the reduced-dimensional data,which preserves the local structural characteristics of the data,so as to retain the local structure characteristics of the data to the greatest extent and reduce the dimension of the data,so as to reduce the amount of calculation of SVDD and reduce the modeling and detection time.The performance of the proposed algorithm is verified by comparing LPP,k NN,SVDD and LPP-SVDD algorithms.It is proved that LPP-SVDD not only has accurate detection capability but also has high detection efficiency.
作者 谢彦红 薛志强 李元 XIE Yan-hong;XUE Zhi-qiang;LI Yuan(Shenyang University of Chemical Technology,Shenyang 110142,China)
出处 《沈阳化工大学学报》 CAS 2022年第1期60-68,共9页 Journal of Shenyang University of Chemical Technology
基金 国家自然科学基金资助项目(61673279,61490701) 辽宁省教育厅重点实验室基础研究项目(LZ2015059) 辽宁省教育厅一般项目(L2015432)。
关键词 维数约减 局部保持投影 支持向量数据描述 半导体工艺过程 故障检测 dimensionality reduction locality preserving projection support vector data description semiconductor process fault detection
  • 相关文献

参考文献11

二级参考文献83

  • 1范玉刚,李平,宋执环.基于特征样本的KPCA在故障诊断中的应用[J].控制与决策,2005,20(12):1415-1418. 被引量:20
  • 2罗四维,赵连伟.基于谱图理论的流形学习算法[J].计算机研究与发展,2006,43(7):1173-1179. 被引量:76
  • 3刘毅,王海清.Pensim仿真平台在青霉素发酵过程的应用研究[J].系统仿真学报,2006,18(12):3524-3527. 被引量:44
  • 4赵忠盖,刘飞.因子分析及其在过程监控中的应用[J].化工学报,2007,58(4):970-974. 被引量:24
  • 5Hyvarinen A, Oja E.A fast fixed-point algorithm for independent component analysis. Neural Computation, 1997, 9 (7): 1483- 1492. 被引量:1
  • 6Lin Kuan Ming, Lin Chin Jen. A study on reduced support vector machine. IEEE Transactions on Neural Networks, 2003, 14 (6):1449 -1459. 被引量:1
  • 7Kim P J, Chang H J, Song D S. Fast support vector data description using K means clustering//Proceeding of the 4th International Symposium on Neural Networks. Nanjing, China, 2007 : 506-514. 被引量:1
  • 8Yan Liu, Bojan Cukic, Srikanth Gururajan. Decompose and combine--a fast training algorithm for SVDD. United States Institute of Peace Technical Report, V&V of Adaptive Systems [ EB/OL ]. http: //sarpresults. ivv. nasa. gov/ DownloadFile/35/19/Decompose G20 and %20Combine%20-G 20AG 20Fast% 20Training% 20Algorithm% 20for% goSVDD, pdf. 被引量:1
  • 9Jong Min Lee, ChangKyoo Yoo, Sang Wook Choi, Veter A Vanrolleghem, ln-Beum Lee. Nonlinear process monitoring using kernel principal component analysis. Chemical Engineering Science, 2004, 59 (1) : 223- 234. 被引量:1
  • 10Shao Jidong, Rong Gang. Nonlinear process monitoring based on maximum variance unfolding projections. Expert Systems with Applications, 2009, 36:11332 - 11340. 被引量:1

共引文献119

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部