期刊文献+

正交迭代局部Fisher判别转子故障诊断 被引量:1

Rotor Fault Diagnosis Using Orthogonal Iteration Local Fisher Discriminant
下载PDF
导出
摘要 通过局部加权邻接矩阵重新定义类内散度和类间散度,建立局部Fisher判别函数,在特征值求解过程中以正交迭代方式找出最优投影向量,得到故障诊断模型。该方法能保证数据降维过程中的重构误差最小,并可直接运用故障诊断模型识别增量数据,避免了一般流形学习模式识别时对动态增量数据需要重建模型的问题。转子故障诊断试验表明,对于多传感器振动特征融合信号,相对其他流形学习算法,正交局部Fisher判别(orthogonl locally Fisher discriminant,简称OLFD)的故障诊断效果最好。 A method of fault diagnosis by using orthogonal iterative local fisher discriminant was proposed to better recognize faults of rotor system.Divergences within and between classes were both redefined on base of local weighted adjacency matrix,and local fisher discriminant function was established.Then optimal projection vector was found by iterative orthogonal approach and fault diagnosis model was achieved which can be directly used to recognize patterns of incremental data.The method guarantees minimum reconstruction errors during dimensionality reduction and be free from model reconstruction on the dynamic incremental data in general manifold learning methods.The experimental result shows that the orthogonal local fisher discriminant (OLFD) algorithm is superior to other manifold learning algorithms in rotor fault diagnoses.
出处 《振动.测试与诊断》 EI CSCD 北大核心 2010年第5期500-503,共4页 Journal of Vibration,Measurement & Diagnosis
基金 国家自然科学基金资助项目(编号:50875082)
关键词 正交迭代 流形学习 局部Fisher判别 故障诊断 orthogonal iteration manifold learning local Fisher discriminant fault diagnosis
  • 相关文献

参考文献10

二级参考文献25

  • 1罗四维,赵连伟.基于谱图理论的流形学习算法[J].计算机研究与发展,2006,43(7):1173-1179. 被引量:76
  • 2Guo Yuefei, Shu Tingting, Yang Lingyu, et al. Feature extraction method based on the generalized Fisher Discriminant criterion and face recognition[J]. Pattern Analysis & Application, 2001,4(1) : 61-66. 被引量:1
  • 3Scholkopf B, Smola A, Muller K R. Nonlinear component analysis as a kernel eigenvalue problem [J]. Neural Computation, 1998,10(5):1 299-1 319. 被引量:1
  • 4Roth V,Steinhage V. Nonlinear discriminant analysis using kernel function[C]//Advances in Neural Information Proceeding Systems 12. MA: MIT Press, 2000:568-574. 被引量:1
  • 5Mika S, Ratsch G, Weston I, et al. Fisher diseriminant analysis with kernels [C] // Proceedings of the 1999 9th IEEE Workshop on Neural Networks for Signal Processing. Madison, WI, USA: Institute of Electrical and Electronics Engineers Inc., Piscataway, NJ, USA, 1999: 41-48. 被引量:1
  • 6Bezdek J C, Pal N R. Some new index of cluster validity[J]. IEEE Trans. SMC, 1998,28(3) : 301-315. 被引量:1
  • 7Hsu C W, Lin C J. A comparison of methods for multiclass support vector machines[J]. IEEE Trans. Neural Netw. , 2002,13(2) :415-425. 被引量:1
  • 8TAKENS F.Detecting strange attractors in turbulence[R].Lecture Notes in Math.New York:Springer,1981. 被引量:1
  • 9SAUER T,YORKE J A,CASDAGLI M.Embedology[J].Journal of Statistical Physics,1991,65:579-616. 被引量:1
  • 10GRASSBERGER P,HEGGER R,KANTZ H,et al.On noise reduction methods for chaotic data[J].Chaos,1993,3(2):127-141. 被引量:1

共引文献64

同被引文献12

引证文献1

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部