期刊文献+

基于核函数Fisher鉴别分析的特征提取方法 被引量:8

Feature Extraction Method Based on Kernel-Based Fisher Discriminant Analysis
下载PDF
导出
摘要 提出一种基于核函数的Fisher鉴别分析的故障特征提取方法。该方法通过内积核函数将原始特征空间映射到高维特征空间,然后在高维特征空间作线性Fisher判别分析,从而得到原始特征空间的非线性特征,最后应用滚动轴承的故障数据对该方法进行了检验。结果表明,与线性Fisher鉴别分析和核主元分析方法相比,基于核函数的Fisher鉴别分析更适合提取机械故障的非线性特征,它所提取的故障特征对故障具有更好的识别分类能力,并且对分类器具有较强的鲁棒性。 A feature extraction approach based on kernel Fisher discriminant analysis (KFDA) was proposed. In this approach, the integral operator kernel functions were used to realize the nonlinear map from the raw feature space to high dimensional feature space.By performing Fisher discriminant analysis (FDA) on the high dimensional feature sets, the nonlinear features of raw feature space were obtained. Experimental fault data of roll bearings were used to test the performance of this method. Practical results show that the method is more suitable for nonlinear feature extraction from fault signals, the extracted features based on KPCA exhibit better ability in fault recognition and they are robust for various classifiers.
出处 《振动.测试与诊断》 EI CSCD 2008年第4期322-326,共5页 Journal of Vibration,Measurement & Diagnosis
基金 国家自然科学基金资助项目(编号:60672179)
关键词 故障诊断 特征提取 核函数Fisher鉴别分析 模式分类 fault diagnosis feature extraction kernel-based Fisher discriminant analysis pattern classification
  • 相关文献

参考文献9

  • 1黄文虎等编著..设备故障诊断原理、技术及应用[M].北京:科学出版社,1996:435.
  • 2Guo Yuefei, Shu Tingting, Yang Lingyu, et al. Feature extraction method based on the generalized Fisher Discriminant criterion and face recognition[J]. Pattern Analysis & Application, 2001,4(1) : 61-66. 被引量:1
  • 3Scholkopf B, Smola A, Muller K R. Nonlinear component analysis as a kernel eigenvalue problem [J]. Neural Computation, 1998,10(5):1 299-1 319. 被引量:1
  • 4Roth V,Steinhage V. Nonlinear discriminant analysis using kernel function[C]//Advances in Neural Information Proceeding Systems 12. MA: MIT Press, 2000:568-574. 被引量:1
  • 5Mika S, Ratsch G, Weston I, et al. Fisher diseriminant analysis with kernels [C] // Proceedings of the 1999 9th IEEE Workshop on Neural Networks for Signal Processing. Madison, WI, USA: Institute of Electrical and Electronics Engineers Inc., Piscataway, NJ, USA, 1999: 41-48. 被引量:1
  • 6甘俊英,张有为.模式识别中广义核函数Fisher最佳鉴别[J].模式识别与人工智能,2002,15(4):429-434. 被引量:24
  • 7程云鹏..矩阵论[M],1989.
  • 8Bezdek J C, Pal N R. Some new index of cluster validity[J]. IEEE Trans. SMC, 1998,28(3) : 301-315. 被引量:1
  • 9Hsu C W, Lin C J. A comparison of methods for multiclass support vector machines[J]. IEEE Trans. Neural Netw. , 2002,13(2) :415-425. 被引量:1

二级参考文献7

  • 1Fisher R A. The Statistical Utilization of Multiple Measurements. Annals of Eugenics, 1938, 8: 376- 386 被引量:1
  • 2Mika S, Ratsch G, Weston J, Scholkopf B, Muller K. Fisher Discriminant Analysis with Kernels. In: Proc of the IEEE Neural Networks for Signal Processing Workshop, Madison, 1999, 41 - 48 被引量:1
  • 3Scholkopf B, Mika S, et al. Input Space Versus Feature Space in Kernel-Based Methods. IEEE Trans on Neural Networks, 1999, 10(5): 1000- 1017 被引量:1
  • 4Weston J, Watkins C. Support Vector Machines for Multi-Class Pattern Recognition. In: Proc of 7th European Symposium on Artificial Neural Networks, Bruges, Belgium, 1999, 219- 224 被引量:1
  • 5Foley D H, Sammon J W. An Optimal Set of Discriminant Vectors. IEEE Trans on Computers, 1975, 24(3) : 281 - 289 被引量:1
  • 6Baudat G, Anouar F. Generalized Discriminant Analysis Using a Kernel Approach. Neural Computation, 2000, 12 : 2385 - 2404 被引量:1
  • 7郭跃飞,黄修武,杨静宇.一种求解Fisher最佳鉴别矢量的新算法及人脸识别[J].中国图象图形学报(A辑),1999,4(2):95-98. 被引量:9

共引文献23

同被引文献141

引证文献8

二级引证文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部