期刊文献+

一种改进的核Fisher鉴别分析方法 被引量:3

A Modified Kernel-Based Fisher Discriminant Analysis Method
下载PDF
导出
摘要 核Fisher鉴别分析(KFDA)已成为抽取非线性特征的最有效方法之一.针对在解决两类模式分类问题中KFDA只能获得一个鉴别矢量的弱点,提出了一种改进的核Fisher鉴别分析(MKFDA)方法,该方法对特征空间中的两类间离散度进行了重新估计,通过使用核类间散布矩阵的一种特殊形式,我们可以得到最多N(N为训练样本数)个鉴别矢量,从而提高了两类模式问题的分类性能.在IRIS数据上的实验结果验证了MKFDA方法的有效性. Although kernel-based Fisher discriminant analysis (KFDA) has became one of the most effective techniques for nonlinear feature abstraction, it can only obtain one discriminant vector when solving the problem of classification between two class. Aiming at this deficiency of KFDA, a modified kernel-based Fisher discriminant analysis(MKFDA) is put forward, in which the between-class scatter degree of two class is re-estimated in the feature space, by using this special form of kernel-based between-class scatter matrix, at most N (the number of training sample) discriminant vectors can be obtained, so the classification ability can be improved largely. Test result on IRIS data set shows the validity of the MKFDA.
作者 高秀梅
出处 《淮阴师范学院学报(自然科学版)》 CAS 2005年第4期335-340,共6页 Journal of Huaiyin Teachers College;Natural Science Edition
基金 江苏省教育厅自然科学基金资助项目(04KJD520037)
关键词 核FISHER鉴别分析 核技巧 类间散布量 特征抽取 非线性最佳鉴别特征 kernel-based Fisher discriminant analysis kernel trick between-class scatter degree feature extraction nonlinear optimal discriminant feature
  • 相关文献

参考文献13

  • 1[1]Wilks S S. Mathematical Statistics[M]. New York: Wiley, 1962. 被引量:1
  • 2[2]Duda R, Hart P. Pattern Classification and Scene Analysis[M]. New York: Wiley, 1973. 被引量:1
  • 3[3]Sebastian M, Gunnar R, Jason M, et al. Fisher discriminant analysis with kernels[A]. Proceedings of IEEE International Workshop on Neural Networks for Singal Processing[C]. Madison, Wisconsin, August 1999:41-48. 被引量:1
  • 4[4]Volker R, Volker S. Nonlinear discriminant analysis using kernel functions[A].In Solla S A, Leen T K, Muller, editors. Advance in Neural Information Processing Systems 12[C]. Cambridge, MA: MIT Press, 2000:568-574. 被引量:1
  • 5[5]Baudat G, Anouar F. Generalized discriminant analysis using a kernel approach[J]. Neural Computation, 2000,12(10):2385-2404. 被引量:1
  • 6甘俊英,张有为.模式识别中广义核函数Fisher最佳鉴别[J].模式识别与人工智能,2002,15(4):429-434. 被引量:24
  • 7[7]Muller K R, Mika S, Gunnar R, et al. An introduction to kernel-based learning algorithms[J]. IEEE Trans Neural Networks, 2001,12(2):181-201. 被引量:1
  • 8[8]Ma J H, Perkins S, Theiler J, Ahalt S. Modified Kernel-based Nonlinear Feature Extraction[A]. International Conference on Machine Learning and Applications[C]. 2002:127-132. 被引量:1
  • 9[9]Vapnik Vladimir N. The Nature of statistical Learning Theory[M]. New York: Springer-Verlag, 1995. 被引量:1
  • 10[10]Bernhard S, Alexander S, Robert M K. Nonlinear component analysis as a kernel eigenvalue problem[J], Neural Computer, 1998, 10:1299-1319. 被引量:1

二级参考文献20

  • 1Wilks S S. Mathematical Statistics [M]. New York: Wiley,1962 被引量:1
  • 2Duda R, Hart P. Pattern Classification and Scene Analysis [M]. New York: Wiley, 1973 被引量:1
  • 3Belhumeur Peter N, Hespanha Joao P, Kriegam David J. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711~720 被引量:1
  • 4Foley Donald H, Sammon John W, Jr. An optimal set of discriminant vectors [J]. IEEE Transactions on Computers,1975, 24(3): 281~289 被引量:1
  • 5Guo Yuefei, Shu Tingting, Yang Jingyu, et al. Feature extraction method based on the generalized fisher discriminant criterion and facial recognition [J]. Pattern Analysis and Application, 2001, 4(1): 61~66 被引量:1
  • 6Vapnik Vladimir N. The Nature of statistical Learning Theory [M]. New York: Springer-Verlag, 1995 被引量:1
  • 7Baudat G, Anouar F. Generalized discriminant analysis using a kernel approach [J]. Neural Computation, 2000, 12 (10):2385 ~ 2404 被引量:1
  • 8Roth Volker, Steinhage Volker. Nonlinear discriminant analysis using kernel functions [A]. In: Solla S A, Leen T K, Muiller K-R, eds. Advance in Neural Information Processing Systems12 [C]. Cambridge, MA: MIT Press, 2000. 568~574 被引量:1
  • 9Mika Sebastian, Ratsch Gunnar, Weston Jason, et al. Fisher discriminant analysis with kernels [A]. In: Hu Y-H, Larsen J,Wilson E, eds. Neural Networks for Signal Processing IX [C]. Piscataway, NJ: IEEE Press, 1999. 41~48 被引量:1
  • 10Miller Klaus-Robert, Mika Sebastian, Ratsch Gunnar, et al. An introduction to kernel-based learning algorithms [J]. IEEE Transactions on Neural Networks, 2001, 12(2): 181~201 被引量:1

共引文献31

同被引文献36

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部