期刊文献+

基于核Fisher判别分析方法的非线性统计过程监控与故障诊断 被引量:17

Nonlinear statistical process monitoring and fault diagnosis based on kernel Fisher discriminant analysis
下载PDF
导出
摘要 化工过程中大量的生产数据反应了生产过程的内在变化和系统的运行状况,基于数据驱动的统计方法可以有效地对生产过程进行监控。对于复杂的化工和生化过程,其过程变量之间的相关关系往往具有很强的非线性特性,传统的线性统计过程监控方法显得无能为力。本文提出了基于核Fisher判别分析的非线性统计过程监控方法,首先利用非线性核函数将数据从原始空间映射到高维空间,在高维空间中利用线性的Fisher判别分析方法提取数据最优的Fisher特征矢量和判别矢量来实现过程监控与故障诊断,能有效地捕获过程变量之间的非线性关系,通过对流化催化裂化(FCCU)过程的仿真表明该方法的有效性。 The data collected from the chemical process reflect the process change and the state of the system, and the data-driven statistical method can efficiently monitor the process. However, for some complicated cases in industrial chemical and biological processes, the conventional linear statistical methods have poor ability of monitoring those processes, because the correlation between the process variables show particularly nonlinear characteristics. In this paper, a nonlinear statistical process monitoring and fault diagnosis method based on kernel Fisher discriminant analysis (KFDA) was proposed. The basic idea of KFDA is to first map the original space into a high dimension feature space via nonlinear mapping and then extract the optimal Fisher feature vector and discriminant vector to achieve process monitoring and fault diagnosis. The proposed method can effectively capture the nonlinear relationship in process variables. It was evaluated by the application to the fluid catalytic cracking unit (FCCU) model and its effectiveness was demonstrated.
出处 《化工学报》 EI CAS CSCD 北大核心 2007年第4期951-956,共6页 CIESC Journal
基金 国家自然科学基金项目(60504033) 工业控制技术国家重点实验室开放课题基金项目(0708004)~~
关键词 核FISHER判别分析 非线性 统计过程监控 故障诊断 kernel Fisher discriminant analysis nonlinear statistical process monitoring fault diagnosis
  • 相关文献

参考文献15

  • 1Kano M,Nagao S,Hasebe S.Comparison of multivariate statistical process monitoring methods with applications to the Eastman challenge problem.Computers and Chemical Engineering,2002,26:161-174 被引量:1
  • 2Lennox B,Hiden H G,Montague G.Application of multivariate statistical process control to batch operations.Computers and Chemical Engineering,2001,24:291-296 被引量:1
  • 3Chiang L H,Russell E L,Braatz R D.Fault Detection and Diagnosis in Industrial Systems.London:Springer Verlag,2001 被引量:1
  • 4Scholkopf B,Mika S,Burges C J C,Knirsch P,Müller K,Ratsch G,Smola A J.Input space versus feature space in kernel-based methods.IEEE Transactions on Neural Networks,1999,10(5):1000-1016 被引量:1
  • 5Mika S,Ratsch G,Weston J,Scholkopf,Müller K R.Fisher discriminant analysis with kernels//Nerual Networks for Signal Processing Ⅸ.Piscataway:IEEE Press,1999:41-48 被引量:1
  • 6Christianini N,Shawe-Taylor J.An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods.UK:Cambridge University Press,2000 被引量:1
  • 7Johnson R A,Wichern D W.Applied Multivariate Statistical Analysis.3rd ed.Englewood Cliffs,New Jersey:Prentice-Hall,1992 被引量:1
  • 8Tracy N D,Young J C,Mason R L.Multivariate control charts for individual observations.Journal of Quality Technology,1992,24:88-95 被引量:1
  • 9Martin E B,Morris A J.Non-parametric confidence bounds for process performance monitoring charts.Journal of Process Control,1996,6(6):349-358 被引量:1
  • 10Simoglou A,Martin E B,Morris A J.Statistical performance monitoring of dynamic multivariate processes using state space modeling.Computers and Chemical Engineering,2002,26:909-920 被引量:1

二级参考文献6

  • 1Dunia R, Qin S J. Subspace Approach to Multidimensional Fault Identification and Reconstruction.AIChE J.,1998,44(8):1813-1831 被引量:1
  • 2WangHaiqing(王海清) SongZhihuan(宋执环) WangHui(王慧).Fault Detection Behavior Analysis of PCA—based Process Monitoring Approach[J].Journal of Chemical Industry and Engineering (China)(化工学报),2002,53(3):297-301. 被引量:1
  • 3Zhang Jie(张杰), Yang Xianhui(阳宪惠). Multivariate Statistical Process Control (多变量统计过程控制).Beijing:Chemical Industry Press,2000 被引量:1
  • 4Zhang J, Martin E B, Morris A J. Fault Detection and Diagnosis Using Multivariate Statistical Techniques.Chemical Engineering Research and Design, 1996,74(1):89-96 被引量:1
  • 5Kano M, Hasebe S, Hashimoto I. A New Multivariate Statistical Process Monitoring Method Using Principal Component Analysis. Computers and Chemical Engineering,2001, 25:1103-1113 被引量:1
  • 6Yang Maying (杨马英). Predictive Control Strategy and Its Application in FCCU Process: [dissertation](学位论文).Hangzhou:Zhejiang University,1996 被引量:1

共引文献12

同被引文献141

引证文献17

二级引证文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部