期刊文献+

运用核Fisher鉴别分析和MPM分类器的入侵检测

Intrusion Detection Based on Kernel Fisher Discriminant Analysis and Minimax Probability Machine Classifier
下载PDF
导出
摘要 为了提高分类器的正确率和减少训练时间,将特征提取技术与分类算法结合,提出了一种基于核Fisher鉴别分析和最小极大概率机算法的入侵检测算法。利用核Fisher鉴别分析技术提取关键特征,运用最小极大概率机对提取特征后的数据进行分类,采用离线数据集KDDCUP99进行实验。实验结果表明,该算法是可行和有效的,使分类性能和训练时间都得到了提高。 To improve the performance of Minimax Probability Machine (MPM) in the detection rate and the training time, Intrusion Detection Based on Kernel Fisher Discriminant Analysis and Minimax Probability Machine Classifier (KFDA-MPM) algorithm is proposed which combines the feature extraction technology and classification algorithm. In this method, the KFDA is used to extract the optimal feature set and then the MPM is adopted to classify the optimization data. Results of the experiment using the Knowledge Discovery and Data Mining Cup 1999 (KDDCUP99) datasets indicate the effectiveness of the algorithm.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2007年第6期1192-1194,共3页 Journal of University of Electronic Science and Technology of China
关键词 数据分类 入侵检测 核FISHER鉴别分析 最小极大概率机 网络安全 data classification intrusion detection kernel Fisher discriminant analysis minimax probability machines network security
  • 相关文献

参考文献10

  • 1HOFMEYR S A. The implications of immunology for secure systems design[J]. Computers & Security, 2004, 23 (6): 453-455. 被引量:1
  • 2CANNADY J. Artificial neural networks for misuse detection[C]//In: Proceedings 1998 National Information Systems Security Conf(NISSC 98). Arlington: [s.n.], 1998. 被引量:1
  • 3FUGATE M, GATTIKER J R. Computer intrusion detection with classification and anomaly detection using SVMs[J]. Int J Pattern Recognition Artif Intell, 2003, 17(3): 441-458. 被引量:1
  • 4饶鲜,董春曦,杨绍全.基于支持向量机的入侵检测系统[J].软件学报,2003,14(4):798-803. 被引量:135
  • 5李辉,管晓宏,昝鑫,韩崇昭.基于支持向量机的网络入侵检测[J].计算机研究与发展,2003,40(6):799-807. 被引量:79
  • 6GIACINTO G, ROLI F, DIDACI L. Fusion of multiple classifiers for intrusion detection in computer networks[J]. Pattern Recognition Letters, 2003, 24(12): 1795-1803. 被引量:1
  • 7LANCKRIET G R G, GHAOUI L E, BHATTACHARYYA C, et al. Minimax probability machine[C]//Proceedings of Advances in Neural Information Processing Systems. Berkeley: Department of EECS University of California, 2002. 被引量:1
  • 8RICHARD L, JOSHUA W, DAVID J, et al. The 1999 DARPA off-line intrusion detection evaluation[J]. Computer Networks, 2000, 34(4): 579-595. 被引量:1
  • 9MAHONEY M V, CHAN P K. An analysis of the 1999 DARPA/Lincoln laboratory evaluation data for network anomaly detection[C]//In: Proceedings of the Sixth International Symposium on Recent Advances in Intrusion Detection, RAID 2003. Pittsburgh: Springer-Vedag, 2003. 被引量:1
  • 10苗夺谦.Rough Set理论中连续属性的离散化方法[J].自动化学报,2001,27(3):296-302. 被引量:139

二级参考文献11

  • 1苗夺谦.Rough Set理论及其在机器学习中的应用研究(博士学位论文)[M].北京:中国科学院自动化研究所,1997.. 被引量:3
  • 2张学工译.统计学习理论的本质[M].北京:清华大学出版社,1995.. 被引量:1
  • 3[1]Forrest S, Perrelason AS, Allen L, Cherukur R. Self_Nonself discrimination in a computer. In: Rushby J, Meadows C, eds. Proceedings of the 1994 IEEE Symposium on Research in Security and Privacy. Oakland, CA: IEEE Computer Society Press, 1994. 202~212. 被引量:1
  • 4[2]Ghosh AK, Michael C, Schatz M. A real-time intrusion detection system based on learning program behavior. In: Debar H, Wu SF, eds. Recent Advances in Intrusion Detection (RAID 2000). Toulouse: Spinger-Verlag, 2000. 93~109. 被引量:1
  • 5[3]Lee W, Stolfo SJ. A data mining framework for building intrusion detection model. In: Gong L, Reiter MK, eds. Proceedings of the 1999 IEEE Symposium on Security and Privacy. Oakland, CA: IEEE Computer Society Press, 1999. 120~132. 被引量:1
  • 6[4]Vapnik VN. The Nature of Statistical Learning Theory. New York: Spring-Verlag, 1995. 被引量:1
  • 7[5]Lee W, Dong X. Information-Theoretic measures for anomaly detection. In: Needham R, Abadi M, eds. Proceedings of the 2001 IEEE Symposium on Security and Privacy. Oakland, CA: IEEE Computer Society Press, 2001. 130~143. 被引量:1
  • 8[6]Warrender C, Forresr S, Pearlmutter B. Detecting intrusions using system calls: Alternative data models. In: Gong L, Reiter MK, eds. Proceedings of the 1999 IEEE Symposium on Security and Privacy. Oakland, CA: IEEE Computer Society Press, 1999. 133~145. 被引量:1
  • 9Wang Jue,J Comput Sci Technol,1998年,13卷,2期,189页 被引量:1
  • 10苗夺谦,博士论文,1997年 被引量:1

共引文献339

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部