期刊文献+

基于FastICA和SVM的EEG信号分类系统 被引量:1

An EEG Signal System Based on FastICA and SVM
下载PDF
导出
摘要 针对大量EEG数据进行分析时,视觉检测显得既费时效率又低,提出了EEG信号分类系统.该系统采用FastICA方法获取EEG信号模式的高阶统计信息,并将输入模式空间映射到相应的独立成分空间,然后利用SVM在独立成分空间中构造广义最优分类超平面.实验研究结果表明:系统综合了FastICA和SVM特性,具有响应实时、漏检率低等优点. An EEG signal detection ensemble system for solving the low rate of vision detection is developed when analysis so many EEG signals. A novel FastICA method was presented, in which the independent component analysis approach was used to acquire the high order statistic infor- mation of EEG intrusion action mode and mapped the input mode space in to the corresponding in- dependent component space. Then the generalized maximal margin hyperplane was constructed in the independent component space using the support vector machine. Testing results show that the system integrates the features of FastICA and SVM to response real-time and lower the rate of false negative.
出处 《计算机研究与发展》 EI CSCD 北大核心 2008年第z1期255-258,共4页 Journal of Computer Research and Development
基金 国家发改委基金项目(CNGI-04-1-2D)
  • 相关文献

参考文献14

二级参考文献59

  • 1孙即祥.数字图像处理[M].石家庄:河北教育出版社,1993.. 被引量:28
  • 2焦李成.神经网络的应用与实现[M].西安:西安电子科技大学出版社,1996.. 被引量:51
  • 3张学工译.统计学习理论的本质[M].北京:清华大学出版社,1995.. 被引量:1
  • 4[1]Amari S.A theory of adaptive pattern classifiers [J].IEEE Trans.Electronic Computers,1967,16:299-307. 被引量:1
  • 5[2]Amari S.Natural gradient works efficiently in learning [J].Neural Comoutation,1998,10:251-276. 被引量:1
  • 6[3]Amari S,Cichocki A.Adaptive blind signal processing:Neural network approaches [J].Proc.IEEE,1998 ,86:2026-2048. 被引量:1
  • 7[4]Basak J,Amari S.Blind separation of uniformly distributed signals:A general approach [J].IEEE Trans.Neural Networks,1999,10:l173-1185. 被引量:1
  • 8[5]Bell A J,Sejnowski T J.An information-maximization approach to blind separation and blind deconvolution [J].Neural Computation,1995,7:1129-1159. 被引量:1
  • 9[6]Burel G.Blind separation of .sources:A nonlinear neural algorithm [J].Neural Networks,1992,5:937-947. 被引量:1
  • 10[7]Cao X R,Liu R W.A general approach to blind source separation [J].IEEE Trans.Signal Processing,1996,44:562-571. 被引量:1

共引文献2699

同被引文献5

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部