摘要
负荷监测是智能用电的一个重要环节,为了实现非侵入式负荷监测,提出了一种基于深度神经网络的非侵入式负荷分解方法。首先提出了改进的电器状态聚类算法,通过改进终止条件和增加消除冗余类判据使得聚类结果更符合电器实际运行情况。针对目前研究常用的隐马尔可夫模型的弱时间特性问题,提出了电器时间特性模型,综合考虑了电器运行特性和用户使用习惯,从时间角度对电器进行建模。构建了深度神经网络进行负荷分解,网络的输入综合考虑了电器状态及时间、功率信息,采用历史运行数据及时间特性模型生成数据训练网络参数。最后,在测试数据集上验证了方法的有效性和准确性。
Load monitoring is an important part of intelligent electricity consumption.For the non-intrusive load monitoring,a deep neural network based non-intrusive load disaggregation method is proposed.Firstly,a modified iterative appliance state clustering algorithm is proposed.By modifying the stopping criteria and adding eliminating criteria of redundant clusters,the clustering results are more consistent with the actual appliance operation.An appliance time characteristic model is proposed considering weak time characteristics of hidden Markov models which are commonly used in the current study.The appliance characteristics and user habits are taken into consideration.The electrical appliances are modeled from the perspective of time.A deep neural network is constructed to perform load disaggregation.The input of the network includes appliance states,power and time information.The history data and the generated data based on models are used to train the network parameters.The effectiveness and accuracy of the method are verified on the data set.
作者
燕续峰
翟少鹏
王治华
王芬
何光宇
YAN Xufeng;ZHAI Shaopeng;WANG Zhihua;WANG Fen;HE Guangyu(School of Electronic Information and Electrical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China;Electric Power Dispatching and Control Center of State Grid Shanghai Municipal Electric Power Company,Shanghai 200122,China)
出处
《电力系统自动化》
EI
CSCD
北大核心
2019年第1期126-132,167,共8页
Automation of Electric Power Systems
基金
国家自然科学基金资助项目(51877134)~~
关键词
非侵入式负荷监测
电器状态聚类
时间特性模型
深度神经网络
non-intrusive load monitoring
appliance state clustering
time characteristic model
deep neural network