期刊文献+

基于Fisher有监督判别的非侵入式居民负荷辨识方法 被引量:50

Non-Intrusive Household Appliance Load Identification Method Based on Fisher Supervised Discriminant
下载PDF
导出
摘要 居民负荷监测是需求侧管理的重要部分,为实现居民非侵入负荷监测与跟踪,研究了非侵入式负荷监测系统物理架构与工作原理,提出一种基于家电负荷主用电特征的负荷辨识方法。以非侵入环境下不同家电负荷的实测电能数据为先验训练样本,利用主成分分析法对8种典型电器的负荷特征样本进行降维处理,得到最优辨识特征,获取综合评估值并结合样本排序图将负荷分为2类。结合Fisher有监督判别准则将2类数据投影到一维空间,实现不同类型负荷的分离。实验证明该方法对不同家电负荷分类和辨识具有良好效果,能够在获取负荷有效特征的基础上实现对不同负荷的有效分辨。 Load monitoring for residents is an important part of demand side management. In order to realize household appliance NILM(non-intrusive load monitoring) and tracking, this paper studied physical architecture of NILM system to see how it works, and proposed a load identification method based on main electrical feature of household appliance. Based on measured data of different loads, PCA(principal component analysis) was used to reduce dimensions of 8 types of typical loads' feature samples, and then optimal identification characteristics were obtained. Combining comprehensive evaluation value with sample sort diagram, loads were divided into two categories. Furthermore, feature space was projected into one-dimensional space to realize separation of different kinds of load with FSD(fisher supervised discriminant) method. Experimental results show that this method can effectively distinguish appliance based on effective load characteristics.
出处 《电网技术》 EI CSCD 北大核心 2016年第8期2484-2490,共7页 Power System Technology
基金 国家重点研发计划项目课题资助(2016YFB0901104) 国家自然科学基金资助项目(51307051) 中央高校基本科研业务费专项资金项目(2014ZP03 2015ZD01) 国网公司科技项目(智能电网用户行为理论与互动化模式研究)~~
关键词 Fisher有监督判别 主成分分析 数据采集 负荷分类 特征提取 FSD PCA data acquisition load classification feature extraction
  • 相关文献

参考文献22

二级参考文献192

共引文献1041

同被引文献268

引证文献50

二级引证文献440

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部