期刊文献+

基于改进HOG特征与LPP算法的木材缺陷识别 被引量:3

Wood defect recognition based on improved HOG feature and LPP algorithm
下载PDF
导出
摘要 在木材缺陷的识别中,由于噪声干扰导致识别率降低,因此提出一种新的木材缺陷识别算法。首先通过计算不同尺度下各个方向的梯度,利用正交分解将各个方向的梯度进行结合,得到改进的梯度方向直方图(HOG)特征,提高了HOG特征的鲁棒性;其次将改进HOG特征与局部二值模式(LBP)特征线性加权得到融合特征,弥补了HOG特征没有表征缺陷纹理变化的缺点;最后通过增加全局信息与监督信息改进局部保持投影(LPP)算法并对其降维,再引入支持向量机(SVM)对上述特征进行分类。实验结果表明:在高斯噪声的信噪比为60 dB的环境下该算法的识别率达到97.13%。 In identification of wood defects,the recognition rate is reduced due to noise interference,so a new wood defect recognition algorithm is proposed.Firstly,by calculating the gradients of different directions under different scales,the improved histogram of gradient direction(HOG)features are obtained by combining the gradients of each direction by orthogonal decomposition,which improves the robustness of HOG features.Secondly,the improved HOG features and local binary pattern(LBP)features are linearly weighted to obtain fusion features,which makes up for the defect that HOG features do not represent the texture changes of defects.Then,the local preserving projection(LPP)algorithm is improved by adding global information and supervision information,and the dimension is reduced.Finally,support vector machine(SVM)is introduced to classify the above features.The experimental results show that the recognition rate of the algorithm reaches 97.13 % when the SNR of Gaussian noise is 60 dB.
作者 彭骞 张华 任万春 刘城 PENG Qian;ZHANG Hua;REN Wanchun;LIU Cheng(School of Information Engineering,Southwest University of Science and Technology,Mianyang 621010,China;Key Laboratory of Sichuan Province for Robot Technology Used for Special Environment,Mianyang 621010,China)
出处 《传感器与微系统》 CSCD 北大核心 2022年第5期123-126,共4页 Transducer and Microsystem Technologies
关键词 机器视觉 木材缺陷识别 改进梯度方向直方图 局部二值模式 局部保持投影 machine vision wood defect recognition improved histogram of gradient direction local binary pattern local preserving projection
  • 相关文献

参考文献8

二级参考文献49

  • 1王欣,申世杰.木材无损检测研究概况与发展趋势[J].北京林业大学学报,2009,31(S1):202-205. 被引量:38
  • 2周国民,陈勇,李国军.人脸识别中应用小波变换的两个关键问题[J].浙江大学学报(理学版),2005,32(1):34-38. 被引量:27
  • 3Tplba A S, El-baz A H, El-harby A A. Face recognition : A literature review[ J ]. Journal of Signal Processing, 2005,2 ( 1 ) : 88 - 103. 被引量:1
  • 4Chellappa R, Wilson C L, Sirohey S. Human and machine recognition of faces:A survey[ C]//Proc of IEEE ,1995:705 -740. 被引量:1
  • 5Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs fisherfaces : Recognition using class specific linear projection [ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19(7) :711-720. 被引量:1
  • 6Turk M, Pentland A. Eigenfaees for recognition [ J ]. Journal Analysis of Cognitive Neurosicence, 1991,3 ( 1 ) : 71 -86. 被引量:1
  • 7Yu H, Yang J. Direct LDA algorithm for high dimensional data with application to face recognition[ J]. Journal of Pattern Recognition ,2001,34 (10) :2067 -2070. 被引量:1
  • 8Huang R, Liu Q S, Lu H Q, et al. Solving the small sample size problem of LDA[ C ]//IEEE Proceedings of the 16th International Conference on Pattern Recognition, Canada, Quebec, 2002 : 29 - 32. 被引量:1
  • 9Lotlikar R, Kothari R. Fractional-step dimensionallity reduction [ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence,2000, 22(6) :623 -627. 被引量:1
  • 10Loog M, Duin R P W, Haeb-umbach R. Muhiclass linear dimension reduction by weighted pairwise fisher criteria [ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2001, 23 (7) :762 -766. 被引量:1

共引文献121

同被引文献42

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部