期刊文献+

基于小波变换的优化LDA人脸特征提取 被引量:4

Optimization LDA face feature extraction based on wavelet transform
下载PDF
导出
摘要 运用小波进行图像分解提取低频子带图,并利用优化的线性判别分析(LDA)算法寻找最优投影子空间,从而映射提取人脸特征,实现人脸的分类识别。该方法避免了传统LDA算法中类内离散度矩阵非奇异的要求,解决了边缘类重叠问题,具有更广泛的应用空间。实验表明:该方法优于传统的LDA方法和主分量分析(PCA)方法。 Low frequency sub-band figures are extracted with wavelet transform,the optimal cast shadow space is found by using optimized linear discriminant analysis(LDA)algorithm,the optimal feature space is got.Face classification and identification are realized in the feature space.In this method,nonsingularity of within class scatter matrix became unnecessary,and the problem of edge overlap is also solved.So,it has better generalization ability comparing with traditional LDA algorithm.Experimental results show that this method is superior to the tranditional LDA and principle component analysis(PCA) method.
作者 方杰 谭晓衡
出处 《传感器与微系统》 CSCD 北大核心 2012年第5期65-67,共3页 Transducer and Microsystem Technologies
基金 中央高校基本科研业务费资助项目(CDJZR10160011) 重庆市自然科学基金资助项目(2010BB2049)
关键词 小波变换 线性判别分析 特征提取 人脸识别 wavelet transform linear discriminant analysis(LDA) feature extraction face recognition
  • 相关文献

参考文献14

  • 1Tplba A S, El-baz A H, El-harby A A. Face recognition : A literature review[ J ]. Journal of Signal Processing, 2005,2 ( 1 ) : 88 - 103. 被引量:1
  • 2Chellappa R, Wilson C L, Sirohey S. Human and machine recognition of faces:A survey[ C]//Proc of IEEE ,1995:705 -740. 被引量:1
  • 3周书仁,邵晶,蒋加伏.基于DCT与LDA的仿生人脸识别研究[J].计算机工程与应用,2011,47(13):208-211. 被引量:6
  • 4赵武锋,沈海斌,严晓浪.直接LDA在人脸识别中的鉴别力分析[J].浙江大学学报(工学版),2010,44(8):1479-1483. 被引量:7
  • 5Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs fisherfaces : Recognition using class specific linear projection [ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19(7) :711-720. 被引量:1
  • 6Turk M, Pentland A. Eigenfaees for recognition [ J ]. Journal Analysis of Cognitive Neurosicence, 1991,3 ( 1 ) : 71 -86. 被引量:1
  • 7Yu H, Yang J. Direct LDA algorithm for high dimensional data with application to face recognition[ J]. Journal of Pattern Recognition ,2001,34 (10) :2067 -2070. 被引量:1
  • 8Huang R, Liu Q S, Lu H Q, et al. Solving the small sample size problem of LDA[ C ]//IEEE Proceedings of the 16th International Conference on Pattern Recognition, Canada, Quebec, 2002 : 29 - 32. 被引量:1
  • 9Lotlikar R, Kothari R. Fractional-step dimensionallity reduction [ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence,2000, 22(6) :623 -627. 被引量:1
  • 10Loog M, Duin R P W, Haeb-umbach R. Muhiclass linear dimension reduction by weighted pairwise fisher criteria [ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2001, 23 (7) :762 -766. 被引量:1

二级参考文献58

共引文献65

同被引文献18

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部