期刊文献+

基于Schur正交的局部Fisher判别转子故障诊断 被引量:4

Rotor Fault Diagnosis Based on Schur Orthogonal Local Fisher Discriminant
下载PDF
导出
摘要 为更好识别转子系统故障,将正交思想引入到局部Fisher判别分析(LFDA)中,提出了一种基于Schur正交的局部Fisher判别(SOLFD)监督流形学习算法。算法以转子故障训练样本为监督信息,通过局部加权邻接矩阵重新定义类内散度和类间散度,构建局部Fisher判别函数。以判别函数值最大化为目标,通过Schur正交分解方式求解最优正交投影向量。将新增测试数据投影到该向量上,获取新数据故障类别信息。转子故障诊断实验表明,相对其他流形学习算法,SOLFD算法有更好的诊断效果。 In order to better identify the fault of a rotor system,a new method of fault diagnosis based on Schur orthogonal local Fisher discriminant(SOLFD) is proposed to solve the fault diagnosis of a rotor system.In this method,the training data as supervision information was used to compute the local with-class scatter and between-class scatter,and to construct the local fisher discriminant function.To maximize the value of discriminant function,optimal orthogonal projection vector was acquired.New test data was mapped to the projection vector and its fault information was known.Experiment for rotor fault diagnosis shows that SOLFD is better than other manifold learning algorithms.
出处 《机械科学与技术》 CSCD 北大核心 2011年第1期62-65,共4页 Mechanical Science and Technology for Aerospace Engineering
基金 国家自然科学基金项目(51075140) 湖南省自然科学基金重点项目(09JJ8005) 湖南省科技创新团队资助
关键词 Schur正交 局部Fisher判别 故障诊断 orthogonal iteration local Fisher discriminant fault diagnosis
  • 相关文献

参考文献13

  • 1Seung H S, Daniel D L. The manifold ways of perception[J]. Science, 2000,290 (5500) :2268 - 2269. 被引量:1
  • 2Roweis S, Saul L. Nonlinear dimensionality reduction by locally linear embedding [ J ]. Science, 2000,290 (5500) : 2323 - 2326. 被引量:1
  • 3Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation [ J ]. Neural Computation, 2003,15(6) :1373 - 1396. 被引量:1
  • 4Zhang Z Y, Zha H Y. Principal manioflds and nonlinear dimension reduction via Tangent Space Alignmnet[ J]. SIAM Journal on Scieutific Computing, 2005,26( 1 ) :313 -338. 被引量:1
  • 5He X F, et al. Face recognition using laplacianfaces[J]. IEEE Transcation on Pattern Analysis and Machine Intelligence, 2005,27 (3) :328 - 340. 被引量:1
  • 6Sugiyama M. Local fisher discriminant analysis for aupervised dimensionality reduction[ A]. Proceedings of 23rd International Conference on Machine Learning[ C ], 2006. 被引量:1
  • 7Sugiyama M. Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis[J]. Machine Learning Research, 2007,8(5) :1027 - 1061. 被引量:1
  • 8Kouropteva O, et al. Supervised locally linear embedding algorithm for pattern recognition[ J ]. Pattern Recognition and Image Analysis, 2003,2652(9) :386 - 394. 被引量:1
  • 9Belkin M, Niyogi P. Semi-supervised Iearning on riemannian manifolds [ J ]. Maching Learing, 2004,56 ( 1 ) : 209-239. 被引量:1
  • 10阳建宏,徐金梧,杨德斌,黎敏.基于主流形识别的非线性时间序列降噪方法及其在故障诊断中的应用[J].机械工程学报,2006,42(8):154-158. 被引量:31

二级参考文献29

  • 1罗四维,赵连伟.基于谱图理论的流形学习算法[J].计算机研究与发展,2006,43(7):1173-1179. 被引量:76
  • 2TAKENS F.Detecting strange attractors in turbulence[R].Lecture Notes in Math.New York:Springer,1981. 被引量:1
  • 3SAUER T,YORKE J A,CASDAGLI M.Embedology[J].Journal of Statistical Physics,1991,65:579-616. 被引量:1
  • 4GRASSBERGER P,HEGGER R,KANTZ H,et al.On noise reduction methods for chaotic data[J].Chaos,1993,3(2):127-141. 被引量:1
  • 5KANTZ H,SCHREIBER T.Nonlinear time series analysis[M].Cambridge:Cambridge University Press,1997. 被引量:1
  • 6KOSTELICH E J,SCHREIBER T.Noise reduction in chaotic time-series data:A survey of common methods[J].Physical Review E,1993,48(3):1 752-1 763. 被引量:1
  • 7SHIN K,HAMMOND J K,WHITE P R.Iterative SVD method for noise reduction of low dimensional chaotic time series[J].Mechanical Systems and Signal Processing,1999,13(1):115-124. 被引量:1
  • 8ROWELS S T,SAUL L K.Nonlinear dimensionality reduction by locally linear embedding[J].Science,2000,290:2 323-2 326. 被引量:1
  • 9TENENBAUM J B,SILVA V D,LANGFORD J C.A global geometric framework for nonlinear dimensionality reduction[J].Science,2000,290:2 319-2 323. 被引量:1
  • 10ZHANG Zhengyue,ZHA Hongyuan.Principal manifolds and nonlinear dimension reduction via local tangent space alignment[R].CSE-02-019,Technical Report,CSE,Penn.State Univ.,2002. 被引量:1

共引文献59

同被引文献31

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部