摘要
本文以线性项和立方项之和来表示转轴材料的物理非线性因素 ,建立了具有非线性刚度轴的转子系统的动力学模型 ,利用数值积分和Poincare映射方法 ,对转子系统由于质量不平衡故障导致的非线性动力学行为进行了研究 ,发现此类非线性振动系统具有倍周期分岔、阵发性分岔、倍周期倒分岔、拟周期和混沌等复杂的动力学行为 。
The dynamic model of a nonlinear rigid rotor system is set up,taking the linear and cubic items as the physical nonlinear factor.The nonlinear dynamic behaviors are studied about the vibration system caused by mass unbalance fault,using the numerical integration and Poincare mapping method.The conclusion indicates that there are doubling-periodic bifurcation,explosive bifurcation,doubling-periodic converse bifurcation and chaos behaviors in the rotor system,which provide theoretic reference for safety run and efficient identification of the mass unbalance fault in rotor.
出处
《振动与冲击》
EI
CSCD
北大核心
2002年第3期84-86,共3页
Journal of Vibration and Shock
基金
国家自然科学基金重大项目 (1 9990 51 0 )