期刊文献+

基于双近邻标准化和PCA的多阶段过程故障检测 被引量:16

DLNS-PCA-based fault detection for multimode batch process
下载PDF
导出
摘要 现代工业产品的生产往往需要多个生产阶段,多阶段生产过程的故障检测成为一个重要问题。多阶段过程数据具有多中心、各工序数据结构不同等特征。针对多阶段过程数据的特征,提出了基于双近邻标准化和主元分析的故障检测方法(DLNS-PCA)。首先寻找样本的双层局部近邻集;其次使用双层局部近邻集的信息标准化样本,得到标准样本;最后在标准样本集上使用主元分析方法进行故障检测。双局部近邻标准化能够将各阶段数据的中心平移到同一点,并且调整各阶段数据的离散程度,使之近似相等,从而将多阶段过程数据融合为服从单一多元高斯分布的数据。进行了青霉素发酵过程故障检测实验,实验结果表明DLNS-PCA方法相对于PCA、KPCA、FDk NN等方法对多阶段过程故障具有更高的检测率。DLNS-PCA方法提高了多阶段过程故障检测能力。 Modern industrial products often require multiple production stages, and the fault detection of multi-stage production process has become an important issue. Multi-stage process data have the characteristics of multi center, different structure of each stage and so on. Aiming at the characteristics, a fault detection method based on double local neighborhood standardization and principal component analysis (DLNS-PCA) is proposed. Firstly, the double local neighborhood set of the sample is found. Secondly, the standard samples are obtained by using the information of the double local neighborhood set. Finally, the PCA method is used to detect the fault on the standard sample set. The DLNS can move the data centers of each stage to the same point, and adjust the degrees of dispersion of data at each stage to make its approximately equal, then multi-stage process data is fused to a single modal data following multivariate Gauss distribution. A fault detection of penicillin simulation process was carried out. The results showed that DLNS-PCA has higher fault detection rate than PCA, KPCA and FD-kNN methods. DLNS-PCA method improves the efficiency of multi-stage process fault detection.
作者 冯立伟 张成 李元 谢彦红 FENG Liwei;ZHANG Cheng;LI Yuan;XIE Yanhong(College of Science,Shenyang University of Chemical Technology,Shenyang 110142,Liaoning,China;Research Center for Technical Process Fault Diagnosis and Safety,Shenyang University of Chemical Technology,Shenyang 110142,Liaoning,China)
出处 《化工学报》 EI CAS CSCD 北大核心 2018年第7期3159-3166,共8页 CIESC Journal
基金 国家自然科学基金项目(61490701 61673279) 辽宁省教育厅基金项目(L2015432) 辽宁省自然科学基金项目(2015020164)~~
关键词 多阶段 故障检测 模型 主元分析 过程控制 multi stage process fault detection model principal component analysis process control
  • 相关文献

参考文献4

二级参考文献35

  • 1于乃功,阮晓钢.细胞自动机及其在菌体生长建模仿真中的应用[J].系统仿真学报,2004,16(12):2651-2654. 被引量:10
  • 2Yu J, Qin S J. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models [J ]. AIChE J. , 2008. 54 (7): 1811-1829. 被引量:1
  • 3Ge Z Q. Song Z H. Multimode process monitoring based on Bayesian method [J ]. J. Ch emom. , 2009, 23 (12): 636-650. 被引量:1
  • 4Ge Z Q, Yang C J, Song Z H, et al. Robust online monitoring for multimode processes based on nonlinear external analysis [J ]. Ind. Eng. Chern, Res., 2008, 47 (14): 4775-4783. 被引量:1
  • 5Zhao C H, Yao v. Gao F R, et al. Statistical analysis and online monitoring for multimode processes with between?mode transitions [J]. Chem. Eng. Sci., 2010. 65: 5961- 5975. 被引量:1
  • 6Ge Z Q, Song Z H. Mixture Bayesian regularization method of PPCA for multimode process monitoring [J]. AIChE J., 2010, 56: 2838-2849. 被引量:1
  • 7Zhao S J, Zhang J, XU Y M. Performance monitoring of processes with multiple operating modes through multiple PLS models [J ]. J. Process Control, 2006, 16 (7): 763-772. 被引量:1
  • 8Zhao S J, Zhang J, XU Y M. Monitoring of processes with multiple operation modes through multiple principle component analysis models [J]. Ind. Eng. Chern, Res. , 2004, 43 (22): 7025-7035. 被引量:1
  • 9Lee Y H, Jin H D, Han C H. On-line process state classification for adaptive monitoring [J ]. Ind. Eng. Chern, Res., 2006, 45 (9): 3095-3107. 被引量:1
  • 10Ge Z Q. Song Z H. Online monitoring of nonlinear multiple mode processes based on adaptive local model approach [J]. Control Eng. Pract. , 2008, 16 (12): 1427-1437. 被引量:1

共引文献91

同被引文献111

引证文献16

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部