期刊文献+

混合分数阶p-Laplace算子方程积分边值问题的多解性 被引量:3

Multiplicity of Solutions for Integrated Boundary Value Problems of Mixed Fractional p-Laplacian Operator Equations
下载PDF
导出
摘要 研究了一类同时具有Riemann-Liouville导数和Caputo导数的混合型分数阶p-Laplace算子方程在Riemann-Stieltjes积分边界条件下的正解的存在性。根据Riemann-Stieltjes积分性质,建立了边值问题具有多个正解存在的结论。分别运用不动点定理和单调迭代方法证明了所得结论的正确性,并建立了求解此类边值问题的近似解的迭代序列。最后给出实例用于说明所得结论的适用性。 The existence of positive solutions was studied for a class of mixed fractional p-Laplacian operator equations with both Riemann-Liouville derivatives and Caputo derivatives under RiemannStieltjes integral boundary conditions. According to the Riemann-Stieltjes integral properties, several conclusions were obtained about the existence of multiple positive solutions of boundary value problems by using the fixed point theorem and monotone iterative method. Iterative sequences were established for finding the approximate solutions of such boundary value problems. Finally, some examples were presented to demonstrate the applicability of the conclusions.
作者 张潇涵 刘锡平 贾梅 陈豪亮 ZHANG Xiaohan;LIU Xiping;JIA Mei;CHEN Haoliang(College of Science,University of Shanghai for Science and Technology,Shanghai 200093,Chin)
出处 《上海理工大学学报》 CAS 北大核心 2018年第3期205-210,共6页 Journal of University of Shanghai For Science and Technology
基金 国家自然科学基金资助项目(11171220) 沪江基金资助项目(B14005)
关键词 P-LAPLACE算子 混合分数阶方程 RIEMANN-STIELTJES积分 不动点定理 正解 p-Laplacian operator mixed fractional equation Riemann-Stieltjes integral fixed point theorem positive solution
  • 相关文献

参考文献4

二级参考文献19

  • 1BALACHANDRA K,KIRUTHIKA S,TRUJILLO J J.Existence results for fractional impulsive integrodifferential equations in Banach spaces[J].Commun Nonlinear Sci Numer Simul,2011,16(4):1970-1977. 被引量:1
  • 2NGUEREKATA G M.A Cauchy problem for some fractional abstract differential equation with nonlocal conditions[J].Nonlinear Anal TMA,2009,70(5):1873-1876. 被引量:1
  • 3SALEM H A H.Multi-term fractional differential equation in reflexive Banach space[J].Math Comput Modelling,2009,49(3/4):829-834. 被引量:1
  • 4ARARA A,BENCHOHRA M,HAMIDI N,et al.Fractional order differential equations on an unbounded domain[J].Nonlinear Anal TMA,2010,72(2):580-586. 被引量:1
  • 5BENCHOHRA M,GRAEF J R,MOSTAFAI F Z.Weak solutions for nonlinear fractional differential equations on reflexive Banach spaces[J].Electron J Qual Theory Differ Equ,2010(54):1-10. 被引量:1
  • 6LI K X,PENG J G,GAO J H.Nonlocal fractional semilinear differential equations in separable Banach spaces[J].Electron J Differ Equ,2013(7):1-7. 被引量:1
  • 7LIANG J T,LIU Z H,WANG X H.Solvability for a couple system of nonlinear fractional differential equations in a Banach space[J].Fract Calc Appl Anal,2013,16(1):51-63. 被引量:1
  • 8AGHAJANI A,POURHADI E,TRUJILLO J J.Application of measure of noncompactness to a Cauchy problems for fractional for differential equations in Banach spaces[J].Fract Calc Appl Anal,2013,16(4):962-977. 被引量:1
  • 9SU X W.Solutions to boundary value problem of fractional order on unbounded domains in a Banach space[J].Nonlinear Anal,2011,74(8):2844-2852. 被引量:1
  • 10PODLUBNY I.Fractional differential equations[M].London:Academic Press,1999. 被引量:1

共引文献23

同被引文献14

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部