摘要
研究了一类同时具有Riemann-Liouville导数和Caputo导数的混合型分数阶p-Laplace算子方程在Riemann-Stieltjes积分边界条件下的正解的存在性。根据Riemann-Stieltjes积分性质,建立了边值问题具有多个正解存在的结论。分别运用不动点定理和单调迭代方法证明了所得结论的正确性,并建立了求解此类边值问题的近似解的迭代序列。最后给出实例用于说明所得结论的适用性。
The existence of positive solutions was studied for a class of mixed fractional p-Laplacian operator equations with both Riemann-Liouville derivatives and Caputo derivatives under RiemannStieltjes integral boundary conditions. According to the Riemann-Stieltjes integral properties, several conclusions were obtained about the existence of multiple positive solutions of boundary value problems by using the fixed point theorem and monotone iterative method. Iterative sequences were established for finding the approximate solutions of such boundary value problems. Finally, some examples were presented to demonstrate the applicability of the conclusions.
作者
张潇涵
刘锡平
贾梅
陈豪亮
ZHANG Xiaohan;LIU Xiping;JIA Mei;CHEN Haoliang(College of Science,University of Shanghai for Science and Technology,Shanghai 200093,Chin)
出处
《上海理工大学学报》
CAS
北大核心
2018年第3期205-210,共6页
Journal of University of Shanghai For Science and Technology
基金
国家自然科学基金资助项目(11171220)
沪江基金资助项目(B14005)