期刊文献+

带有p-Laplacian算子的分数阶微分方程多点边值问题正解的存在性

Existence of Positive Solution for Multi-Point Boundary Value Problems of Fractional Differential Equations with p-Laplacian
下载PDF
导出
摘要 在以下带有p-Laplacian算子的分数阶微分方程多点边值问题中:{D_0~β+(Φ(D_0~α+u(t)))=λf(u(t)),0<t<1,2<α≤3,1<β≤2,u(0)=u'(0)=0,u(1)=■β_iu(ξ_i),Φ(D_0~α+u(0))=(Φ(D_0~α+u(1)))'=0,其中D_0~α+,D_0~β+是Riemann-Liouville分数阶导数,f∶[0,+∞)→[0,+∞)是连续函数,文章的新奇之处在于运用Guo-Krasnoselskii不动点定理来研究了一类含参量的带有p-Laplacian多点边值问题正解的存在性及不存在性. In the following multi-point boundary value problem of fractional differential equation with p-Laplacian:{D0~β+(Φ(D0~α+u(t)))=λf(u(t)),0t1,2α≤3,1β≤2,u(0)=u'(0)=0,u(1)=■βiu(ξi),Φ(D0~α+u(0))=(Φ(D0~α+u(1)))'=0,where D0~α+,D0~β+ are the Riemann-Liouville differentiation, f∶[0,+∞)→[0,+∞)is a continuous function. The novelty of this paper is to use Guo-Krasnoselskii fixed point theorem to study the existence and non-existence of positive solutions.
作者 张艳 马德香 ZHANG Yan;MA Dexiang(College of Mathematics and Physics, North China University of Electrical Power,Beijing 102206,China)
出处 《汕头大学学报(自然科学版)》 2017年第3期29-41,共13页 Journal of Shantou University:Natural Science Edition
关键词 分数阶微分方程 P-LAPLACIAN算子 多点边值问题 不动点定理 fractional differential equation p-Laplacian operator multi-point boundary value problem fixed point theorem
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部