摘要
研究了一类共振条件下分数阶微分方程积分边值问题解的存在性。利用重合度理论,在dim Ker L=2时,建立并证明了边值问题解的存在性定理。
Existence of solutions for a class of fractional differential equations with integral boundary conditions is studied at resonance. By using coincidence degree theory,we obtain and prove the theorem about existence of solutions for the integral boundary value problem with dim Ker L = 2.
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2016年第8期66-73,共8页
Journal of Shandong University(Natural Science)
基金
国家自然科学基金资助项目(11171220)
沪江基金资助项目(B14005)
关键词
分数阶微分方程
CAPUTO导数
积分边值问题
共振
重合度理论
fractional differential equation
Caputo derivative
integral boundary value problem
resonance
coincidence degree theory