期刊文献+

分数阶脉冲微分方程三点边值问题解的存在性和唯一性 被引量:4

Existence and uniqueness of solutions for three point boundary value problems of impulsive fractional differential equations
原文传递
导出
摘要 研究了一类分数阶脉冲微分方程三点边值问题解的存在性和唯一性。利用Schauder不动点定理及压缩映射原理,获得了该边值问题解的存在性和唯一性定理。 The existence and uniqueness of solutions is investigated for a class of three point boundary value problems of fractional differential equations with impulsive. By using the Schauder fixed point theorem and contraction mapping principle,some theorems about the existence and uniqueness of solutions for the boundary value problem are obtained.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2017年第2期66-72,共7页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(11171220) 沪江基金资助项目(B14005)
关键词 三点边值问题 分数阶脉冲微分方程 CAPUTO导数 存在性与唯一性 不动点定理 three-point boundary value problem impulsive fractional differential equations Caputo derivative existence and uniqueness fixed point theorem
  • 相关文献

参考文献7

二级参考文献30

  • 1PodlubnyⅠ.Fractional differential equations[M].San ??Diego:Acad Press,1999. 被引量:1
  • 2Ahmad B,Juan J N.Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditio. 被引量:1
  • 3Zhong W Y,Lin W.Nonlocal and multiple-point boundary value problem for fractional differential equations[J].Appl Math Comput,2010,59(3):1. 被引量:1
  • 4Ahmad B,Sivasundram S.Existence of solution for impulsive integral boundary value problems of fractional order[J].Nonlinear Anal:Hybrid S. 被引量:1
  • 5Ahmad B.Existence of solutions for irregular boundary value problems of nonlinear fractional ddifferential equations[J].Appl Math Lett,20. 被引量:1
  • 6Liu X P,Jia M.Multiple solutions for fractional differential equations with nonlinear boundary conditions[J]. Compu Math Appl,2010,59(8):. 被引量:1
  • 7Mujeeb UR R,Rahmat A K.Existence and uniqueness of solutions for multi-point boundary value problems for fractional differential equation. 被引量:1
  • 8Ahmad B,Sivasundram S.On four-point nonlocal boundary value problems of nonlinear integrodifferential equations of fractional order[J].Ap. 被引量:1
  • 9Lakshmikantham V,Leela S J,Vasundhar D.Theory of fractional dynamic systems[M].Cambridge: Cambridge Academic Publishers,2009. 被引量:1
  • 10尤秉礼.常微分方程补充教程[M].北京:人民教育出版社,1981.252. 被引量:49

共引文献27

同被引文献12

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部