期刊文献+

共振条件下多点边值问题解的存在性 被引量:4

Existence of Solutions to Multi-Point Boundary Value Problems at Resonance
原文传递
导出
摘要 本文讨论多点边值问题x"(t)=f(t,x(t),x'(t))+e(t),t∈(0,1);x'(0)= x'(ξ),x(1)=sum from i=1 to m-3βix(ηi)解的存在性,其中βi∈R,sum from i=1 to m-3β=1,0<η1<η2< …<ηm-3<1,0<ξ<1,sum from i=1 to m-3βiηi=1.这时dimKer L=2.当βi取不同的符号 时,应用Mawhin重合度定理,证明了多点边值问题的一些存在性结果. 以前文章所 涉及的多点边值问题解的存在性都是在dim Ker L=1的情况下讨论的,所以我们的 工作是新的探索. The paper is concerned with the existence of solutions for the following multi-point boundary value prolem x'(t) = f(t,x(t), x'(t)) + e(t), t ∈(0,1); x'(0) = x'(ξ), x(1) =sum from i=1 to m-3 βix(ηi) where βi ∈ R, rum form i=1 to m-3βi= 1, 0 <η1<η2 <... <ηm-3 < 1, 0 <ξ< 1, and rum form i=1 to m-3βiηi=1. This is the case dim Ker L = 2. When the βi's have different signs, we prove existence results for the m-point boundary value problem at resonance by the use of Mawhin's coincidence degree theory. Since all the existence results obtained in previous papers are for the case dim Ker L=1, our work is new.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2005年第2期281-290,共10页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(10371006)
关键词 边值问题 FREDHOLM算子 共振 Boundary value problem Fredholm operator Resonance
  • 相关文献

参考文献8

  • 1Feng W., Webb J. R. L., Solvability of m-point boundary value problems with nonlinear growth, J. Math.Anal. Appl., 1997, 212: 467-480. 被引量:1
  • 2Feng W., Webb J. R. L., Solvability of three-point boundary value problems at resonance, Nonlinear Anal.Theory, Meth. Appl., 1997, 30: 3227-3238. 被引量:1
  • 3Mawhin J., Topologicio degree and boundary value problems for nonlinear differential equations, in: P. M.Fitzperteick, M. Martelli, J. Mawhin, R. Nussbaum (Eds.), Topological Methods for Ordinary Differential Equations, Lecture Notes in Mathematics, Vol. 1537, New York, Berlin: Springer-Verlag, 1991. 被引量:1
  • 4Liu B., Yu J. S., Solvability of multi-point boundary value problem at resonance (Ⅰ), Indian J. Pure and Appl.Math., 2002, 33: 475-494. 被引量:1
  • 5Liu B., Solvability of multi-point boundary value problem at resonance (Ⅱ), Appl. Math. Comput., 2003,136: 353-377. 被引量:1
  • 6Liu B., Yu J. S., Solvability of multi-point boundary value problem at resonance (Ⅲ), Appl. Math. Comput.,2002, 129: 119-143. 被引量:1
  • 7Mawhin J., Topological degree in nonlinear boundary value problem, in: NSFCBMS Regional Conference Series in Mathematics, American Mathmeatical Society, Providence, RI, 1979. 被引量:1
  • 8Xue C. Y., Ge W. G., Solvability of m-point boundary value problem at resonance, Submitted. 被引量:1

同被引文献10

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部