期刊文献+

具有逐项分数阶导数的微分方程边值问题解的存在性 被引量:2

Existence of solutions for boundary value problem of fractional differential equations involving sequential fractional derivative
下载PDF
导出
摘要 研究了一类具有逐项分数阶导数的微分方程边值问题.对参数的各种取值情况进行了全面的分析,运用Banach压缩映射原理和Schauder不动点定理,得到并证明了边值问题解的存在性定理.最后,给出了两个例子来证明结论有效. This paper investigates the existence of solutions for boundary value problem of fractional differential equations involving sequential fractional derivative. To analyze comprehensively the parameters and by using Banach contraction mapping principle and Schauder fixed point theorem, some new results on the existence of solution for the boundary value problem are obtained. Finally, we give two examples to illustrate our results.
出处 《纯粹数学与应用数学》 2016年第5期470-480,共11页 Pure and Applied Mathematics
基金 国家自然科学基金(11171220) 沪江基金(B14005)
关键词 分数阶微分方程 逐项分数阶导数 边值问题 BANACH压缩映射原理 SCHAUDER不动点定理 fractional differential equation sequential fractional derivative boundary value problem Banach contraction mapping principle Schauder fixed point theorem
  • 相关文献

参考文献6

二级参考文献40

  • 1李高尚,刘锡平,贾梅,李春岭,李芳菲.一类二阶常微分方程组边值问题三个正解的存在性[J].上海理工大学学报,2007,29(1):6-10. 被引量:4
  • 2郭大钧,孙经先.非线性常微分方程泛函方法[M].济南:山东科学技术出版社.1994. 被引量:8
  • 3郭大钧,孙经先,刘兆理.非线性常微分方程泛函方法[M].2版.济南:山东科学技术出版社,2006. 被引量:7
  • 4Podlubny 1. Fractional Differential Equations [ M]. New York: Academic Press, 1999. 被引量:1
  • 5Cannon J R. The Solution of the Heat Equation Subject to the Specification of Energy [ J 1- Quarterly of Applied Mathematics, 1963, 21 (2): 155-160. 被引量:1
  • 6Ionkin N I. Solution of a Boundary Value Problem in Heat Conduction Theory with Nonlocal Boundary Conditions [ J ]. Differential Equations, 1977, 13 : 294-304. 被引量:1
  • 7Boucherif A. Second-Order Boundary Value Problems with Integral Boundary Conditions [ J ]. Nonlinear Analysis, 2009, 70( 1 ) : 364-371. 被引量:1
  • 8ZHANG Guo-wei, SUN Jing-xian. Multiple Positive Solutions of Singular Second-Order m-Point Boundary Value Problems [J].J Mathematical Analysis and Applications, 2006, 317(2) : 442-447. 被引量:1
  • 9Goodrich C S. Existence of a Positive Solution to a Class of Fractional Differential Equations [ J]. Applied Mathematics Letters, 2010, 23 (9) : 1050-1055. 被引量:1
  • 10BAI Zhan-bing, LU Hai-shen. Positive Solutions for Boundary Value Problem of Nonlinear Fractional Differential Equation [ J ]. Mathematical Analysis and Applications, 2005, 311 : 495-505. 被引量:1

共引文献34

同被引文献17

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部