期刊文献+

差分进化混合粒子群算法求解装配式住宅项目进度优化问题 被引量:12

A differential evolution particle swarm algorithm for prefabricated housing project schedule optimization problem
下载PDF
导出
摘要 针对装配式住宅项目进度优化问题,提出了基于差分算法(DE)和粒子群算法(PSO)的差分粒子群混合算法(DEPSO)。建立了以项目工期最优为目标的进度优化模型,通过在DE和PSO之间建立信息交流机制,避免了单一算法容易落入局部最优和精度低的缺陷。最后以某装配式住宅项目为例,通过三种算法的比较,结果表明DEPSO在求解装配式住宅项目进度优化中合理高效、鲁棒性较强,能有效地解决装配式住宅项目工期优化问题,有较大的应用价值。 We propose a differential evolution particle swarm algorithm (DEPSO) for prefabricated housing project schedule optimization problem based on the difference algorithm (DE) and the particle swarm optimization (PSO). The prefabricated project schedule optimization model whose objective is the optimal fabricated project period schedule optimization is built. The new algorithm establishes an information exchange mechanism between the DE and the PSO to avoid that either of the two single algorithms fall into local optimum. With a prefabricated housing project as an example, we compare the three algorithms, and the results prove that the DEPSO is reasonable, efficient and robust in solving assembled project schedule optimization, and it can effectively solve the optimization problem of prefabricated housing project period, thus having great application value.
作者 赵平 吴昊
出处 《计算机工程与科学》 CSCD 北大核心 2016年第7期1495-1501,共7页 Computer Engineering & Science
基金 陕西省自然科学基础研究基金(2014JM2-5046) 国家自然科学基金(51308441) 陕西省科技统筹创新工程计划(2015KTCQ03-18 2015KTZDSF03-05-03)
关键词 装配式住宅 差分算法 粒子群算法 进度优化 prefabricated housing differential evolution particle swarm optimization algorithm schedule optimization
  • 相关文献

参考文献2

二级参考文献23

  • 1莫愿斌,陈德钊,胡上序.高维化工数据共轭粒子群算法处理[J].计算机工程与设计,2007,28(6):1241-1243. 被引量:4
  • 2刘永忠,张超,赵振辉,冯霄.基于超结构方法的氢网络系统优化[J].华北电力大学学报(自然科学版),2007,34(2):24-26. 被引量:10
  • 3Price K, Stom R M,Lampinen J A.Differential evolution:A practical approach to global optimization[M].Springer Verlag,2005. 被引量:1
  • 4den Bergh F V, Engelbrecht A P.A study of particle swarm optimization particle trajectories [J].Information Sciences,2006,176: 937-971. 被引量:1
  • 5Babu B B, Chakole P G, Mubeen J H S.Differential evolution strategy for optimal design of gas transmission network[J].Journal of Multidisciplinary modeling in Materials and Structures, 2005(1):315-328. 被引量:1
  • 6Onwubolu G,Davendra D.Scheduling flow shops using differential evolution algorithm[C].European J of Operational Research, 2006,171 (2):674-692. 被引量:1
  • 7Ge H W, Liang Y C,Zhou Y, et al.A particle swarm optimization-based algorithm for job-shop scheduling problem[J].International Journal of Computational Methods, 2005,2 (3): 419-430. 被引量:1
  • 8Zhang W J,Xie X F.DEPSO:hybrid particle swarm with differential evolution operator[C].Proc of the IEEE Int Confon Systems,Man and Cybernetics,2003:3816-3821. 被引量:1
  • 9Hao Z F, Guo G H,Huang H.A particle swarm optimization algorithm with differential evolution[C]. HongKong:Proc of the Sixth Int Conf on Machine Learning and Cybernetics,2007:1030- 1035. 被引量:1
  • 10刘永忠,张超,彭春来,冯霄.氢网络公用工程消耗量与流股匹配数的优化[J].石油学报(石油加工),2007,23(5):78-83. 被引量:15

共引文献25

同被引文献86

引证文献12

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部