期刊文献+

基于模糊进化算法的建筑工程进度优化研究 被引量:3

Study on the construction schedule optimization based on fuzzy-evolutionary algorithm
下载PDF
导出
摘要 针对建筑工程施工工期的不确定性,引入模糊数学理论,采用6点模糊数表示工期。以建设单位对优化工期的满意度和可靠性作为优化目标,建立资源受限条件下施工进度数学优化模型,利用进化算法对施工进度进行优化。通过建筑工程实例,证明了本研究设计的算法的有效性和可行性。 In view of the uncertainty of building construction, fuzzy due date is denoted by six-pointfuzzy numbers through the introduction of fuzzy mathematics. Based on the objective to maximize the clients' satisfaction degree and the reliability of the optimization result, the mathematical model forfuzzy resource-constrained project scheduling is established. By use of the evolutionary algorithm, theoptimization of project progress under the limited resource is studied. The result of the computational experiment shows the algorithm is effective and feasible.
出处 《河北农业大学学报》 CAS CSCD 北大核心 2012年第1期98-101,110,共5页 Journal of Hebei Agricultural University
基金 河北省自然基金项目(No.E2010000802)
关键词 模糊数 进度优化 资源受限 进化算法 fuzzy number schedule optimization resource-constrained evolutionary algorithm
  • 相关文献

参考文献8

  • 1高斌,谈干军.工程网络计划技术在建设工程中的应用研究[J].中国科技信息,2007(1):38-39. 被引量:2
  • 2Maciej Hapke,Andrzej Jaszkiewica,Roman slowinski.Fuzzy project scheduling system for software develop-ment[J].Fuzzy Sets and Systems,1994,67(1):101-117. 被引量:1
  • 3Maciej Hapke,Roman slowinski.Fuzzy priority heu-ristics for project[J].Fuzzy Sets and Systems,1996,83(3):291-299. 被引量:1
  • 4Ricky Wai-kin Wu,Fabian C Hadipriono.Fuzzy mofusponens deduction technique for construction schedu-ling[J].Journal of Construction Engineering andManagement,ASCE 1994,120(1):162-179. 被引量:1
  • 5Juite Wang.A fuzzy project scheduling approach tominimize schedule risk for product development[J].Fuzzv Sets and Systems,2002,127(2):99-116. 被引量:1
  • 6郑金华,罗彪,李晶,文诗华,李望移.进化算法鲁棒最优解研究综述[J].计算机科学,2009,36(2):30-34. 被引量:2
  • 7王宏.求解资源受限项目调度问题算法的研究[D].天津:天津大学,2007. 被引量:2
  • 8Ching-Hsue Cheng.New approach for ranking fuzzynumbers by distance method[J].Fuzzy Sets and Sys-tems,1998,95(3):307-317. 被引量:1

二级参考文献67

  • 1郑金华,史忠植,谢勇.基于聚类的快速多目标遗传算法[J].计算机研究与发展,2004,41(7):1081-1087. 被引量:14
  • 2郑金华,蒋浩,邝达,史忠植.用擂台赛法则构造多目标Pareto最优解集的方法[J].软件学报,2007,18(6):1287-1297. 被引量:54
  • 3Holland J H. Adaptation in Natural and Artificial Systems [M]. USA: Univ. of Michigan, 1975 被引量:1
  • 4Schaffer J D. Multiple Objective Optimization with Vector Evaluated Genetic Algorithms[D]. PhD thesis. Vanderbilt University,1984 被引量:1
  • 5Fonseca C M, Fleming J. Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization[C]//Forrest S, ecl. Proceedings of the Fifth International Conference on Genetic Algorithms. University of Illinois at Urbana-Champaign, Morgan Kauffman Publishers, San Mateo, California, 1993:416-423 被引量:1
  • 6Horn J , Nafpliotis N , Goldberg D E. A Niched Pareto Genetic Algorithm for Multio.bjective Optimization [C]//Proeeedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence. Piscataway, New Jersey, IEEE Service Center, 1994,1 : 82-87 被引量:1
  • 7Zitzler E, Thiele L. Multiobjective Evolutionary Algorithms : A Comparative Case Study and the Strength Pareto Approach [J]. IEEE Transactions on Evolutionary Computation, 1999,3(4): 257-271 被引量:1
  • 8Knowles J, Come D. Properties of an Adaptive Archiving Algorithm for Storing Nondominated Vectors[J].IEEE Transactions on Evolutionary Computation, 2003,7 (2) : 100-116 被引量:1
  • 9Deb K, Prata PA, Agarwal S, et al. A Fast and Elitist Multiobjective Genetic Algorithm:NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002,6 (2):182-197 被引量:1
  • 10Corne D W, Knowles J D, Oates M J. The pareto envelope-based selection algorithm for multiobjecitve optimization [C]//Schoenauer M, Deb K, Rudolph G, eds. Proceedings of the Parallel Problem Solving from Nature VI Conference. Paris, France, 2000:839-848 被引量:1

共引文献3

同被引文献28

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部