期刊文献+

高维化工数据共轭粒子群算法处理 被引量:4

Conjugate direction particle swarm optimization and its application for high-dimensional chemical engineering data processing
下载PDF
导出
摘要 针对化工数据多为高维数据,而粒子群算法对求解高维优化问题易陷局部极值,提出将共轭方向法与粒子群算法相结合处理高维数据。当粒子群算法迭代了一定步数而陷入局部极值并得局部最优解时,以为初值,用共轭方向法对其求解,利用粒子群算法对低维优化问题的有效性,将得新的更优的当前最优解,从而使算法跳出局部极值;在新极值的条件下,又用粒子群算法对原问题求解,如此反复直至结束。通过经典的测试函数对其测试,结果表明这一尝试是有效的。最后将算法用于SO2催化氧化反应动力学模型的非线性参数估计,获得满意效果。 Aimed at the data that we get in chemical industry most being high dimensional, and particle swarm optimization (PSO) being easily trapped into local minima value for high dimensional function, a method conjugate direction particle swarm optimization (CDPSO), which combined conjugate direction method with PSO, is proposed to process high-dimensional data. To one optimization problem, after PSO had run some iterations and trapped into local minima and got local optimal solution x*, conjugate direction method with x* as an initial guess is applied to optimize the problem. By the effectiveness of PSO for low-dimensional function optimization, it would get a better new local optimal solution x**, so this tactics helped PSO to overcome local minima. Under x** is present optimal solution; PSO is used for the high-dimensional function optimization again, if it trapped into local minima value again, then conjugate direction method is applied again, running in this way until termination. Experimental results on benchmark functions show that the proposed tactics is efficient. At last the algorithm is applied to nonlinear parameter estimation of burning anteiso-dynamics model of sulfur dioxide acted on by caesium-rubidium-vanadium low temperature sulfur acid catalyst and got satisfying results.
出处 《计算机工程与设计》 CSCD 北大核心 2007年第6期1241-1243,1254,共4页 Computer Engineering and Design
基金 国家自然科学基金项目(20276063)
关键词 粒子群优化算法 共轭方向法 高维函数优化 非线性参数估计 数据处理 particle swarm optimization conjugate direction method high-dimensional function optimization nonlinear parameter estimation data processing
  • 相关文献

参考文献8

二级参考文献29

  • 1傅强,胡上序,赵胜颖.基于PSO算法的神经网络集成构造方法[J].浙江大学学报(工学版),2004,38(12):1596-1600. 被引量:18
  • 2席裕庚,柴天佑,恽为民.遗传算法综述[J].控制理论与应用,1996,13(6):697-708. 被引量:346
  • 3DAVIS L D. Handbook of genetic algorithms [M].New York: Van Nostrand Reinhold,1991. 被引量:1
  • 4VANDERNOOT T J, ABRAHAMS I. The use of genetic algorithms in the nonlinear regression of immittance data [J]. Journal of Electroanalytical Chemistry,1998,448:17--23. 被引量:1
  • 5MICHALEWICZ Z. Genetic algorithms-data structures: evolution programs [M]. Berlin : Springer-Vetlag Berlin Heidelberg, 1996. 被引量:1
  • 6Storn R,Price K.Differential Evolution--A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces.Technical Report TR-95-012 ,ICSI 被引量:2
  • 7Storn R,Price K. Minimizing the Real Functions of the ICEC'96 Contest by Differential Evolution.In:IEEE Conference on Evolutionary Computation,Nagoya,Japan,1996.842-844 被引量:1
  • 8Shih-Lian Cheng, Chyi Hwang. Optimal Approximation of Linear Systems by a Differential Evolution Algorithm, Systems, Man and Cybernetics, Part A.IEEE Transactions on, 2001,31(6):698-707 被引量:2
  • 9Hu Shangxu(胡上序), Chen Dezhao(陈德钊).Analysis and Dispose on Data by Observation(观测数据的分析与处理). Hangzhou:Zhejiang University Press, 2002.150-151 被引量:1
  • 10Storn R. On the Usage of Differential Evolution for Function Optimization.Berkeley: NAFIPS,1996.519-523 被引量:1

共引文献49

同被引文献29

引证文献4

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部