期刊文献+

求解考虑机器调整时间的并行机分批优化调度问题 被引量:2

Solve Batch Optimization Scheduling Problem of Parallel Machine Considering Machine Adjustment Time
下载PDF
导出
摘要 基于目前车间调度问题是以单个或整批进行生产加工的并行机调度模型已不再符合实际工况下的车间生产。提出以最小化最大完工时间为优化目标,对遗传差分进化混合算法,灰狼差分进化混合算法进行了比较。为提高加工工件进行分批及分批之后子批的分配与排序效率,该问题是对不同规模的经典并行机调度问题进行求解并展示两种算法的求解,证明了灰狼差分进化混合算法在寻优性能上优于遗传差分进化混合算法,不仅具有更好的解的稳定性,而且具有更高的寻优精度。 Based on the current shop floor scheduling problem,the parallel machine scheduling model for single or batch production processing is no longer consistent with shop floor production under actual operating conditions.Aiming at minimizing the maximum completion time as the optimization goal,the genetic differential evolution hybrid algorithm and the gray wolf differential evolution hybrid algorithm were compared.In order to improve the efficiency of allocation and sequencing of batches and sub-batches after processing batches,the problem is to solve the classical parallel machine scheduling problem of different sizes and to show the solution of two algorithms.The optimization performance is better than the genetic differential evolution hybrid algorithm,not only has better solution stability,but also has higher optimization accuracy.
作者 孙思汉 陶翼飞 董圆圆 张源 王加冕 SUN Si-han;TAO Yi-fei;DONG Yuan-yuan;ZHANG Yuan;WANG Jia-mian(Kunming University of Science and Technology,Kunming 650000,China)
出处 《软件》 2020年第4期20-27,共8页 Software
基金 国家自然科学基金地区基金(批准号:51566006)。
关键词 机器调整时间 灰狼差分进化混合算法 并行机调度 最小化最大完工时间 Machine adjustment time Grey wolf differential evolution hybrid algorithm Parallel machine scheduling Minimizing maximum completion time
  • 相关文献

参考文献11

二级参考文献50

  • 1王凌,吉利军,郑大钟.基于代理模型和遗传算法的仿真优化研究[J].控制与决策,2004,19(6):626-630. 被引量:13
  • 2Michael P,张智海.调度:原理、算法和系统[M].2版.北京:清华大学出版社,2007:12-75. 被引量:2
  • 3GRAHAM R L, LAWLER E L, LENSTRA J K, et al. Optimization and approximation in deterministic sequencing and scheduling: A survey[J]. Annals of Discrete Mathematics, 1979, 5: 287-326. 被引量:1
  • 4PINEDO M. Scheduling: Theory, algorithms, and systems[M]. New Jersey: Prentice-Hall, Englewood Cliffs, 1995. 被引量:1
  • 5MOKOTOFF E. Parallel machine scheduling problems: A survey[J]. Asia-Pacific Journal of Operational Research, 2001, 18(2): 193-242. 被引量:1
  • 6ALLAHVERDI A, GUPTA J N D, ALDOWAISAN T. A review of scheduling research involving setup considerations[J]. Omega, 1999, 27(2). 219-239. 被引量:1
  • 7ALLAHVERDI A, NG C T, CHENG T C E, et al. A survey of scheduling problems with setup times or costs[J]. European Journal of Operational Research, 2008, 187(3): 985-1032. 被引量:1
  • 8GOLDBERG D E. Genetic algorithms in search, optimization and machine learning[M]. New Jersey: Addison-Wesley, 1989. 被引量:1
  • 9LOPES M J P, CARVALHO J M V D. A branch-and-price algorithm for scheduling parallel machines with sequence dependent setup times[J]. European Journal of Operational Research, 2007, 176(3): 1508-1527. 被引量:1
  • 10YALAOUI F, CHU C. An efficient heuristic approach for parallel machine scheduling with job splitting and sequence-dependent setup times[J]. IIE Transactions, 2003, 35(2): 183-190. 被引量:1

共引文献109

同被引文献17

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部