摘要
设(n)是Euler函数.主要研究了方程(xy)=3((x)+(y))的可解性问题,利用初等的方法给出了这一方程的所有的35组正整数解.对于任意素数k>3,(x,y)=(3k,4k),(4k,3k)是方程(xy)=k((x)+(y))的2个正整数解.证明了更为一般的结论:对于任意奇数k>3,当gcd(k,3)=1时,(x,y)=(3k,4k),(4k,3k)是方程(xy)=k((x)+(y))的2个正整数解.
Letψ(n)be Euler function.The equationψ(xy) = 3(ψ(x)+ψ(y)) was discussed,and the all integer solutions of its were given by using elementary method For any prime k 〉3,(x,y) =(3k,4k),(4k,3k)are two positive integer solutions of equationψ(xy) = k(ψ(x)+ψ(y)).An average conclusion that if gcd(k,3) = 1,then(x,y) =(3k,4k),(4k,3k)are two positive integer solutions of equationψ(xy) = k(ψ(x) +ψ(y))for any odd k 〉 3 was proofed.
出处
《数学的实践与认识》
CSCD
北大核心
2014年第20期302-305,共4页
Mathematics in Practice and Theory
关键词
EULER函数
不定方程
整数解
Euler function
Diophantine equation
integer solutions