摘要
研究了Euler函数方程φ(x)=m的解。当m=2p,2pn,2pq(p,q为素数,n为正整数)时,给出了方程φ(x)=m的所有解。当m=2r,2nr(r为奇数)时,给出了方程φ(x)=m的解结构。这一结果可以应用在有限群论的结构研究中(见文[4-6])。
The solution of Euler function equation φ(x)=m is studied in this paper. When m=2p,2p n,2pq(p,q are primes, n is positive integer), all the solutions of equation φ(x)=m will be got. When m=2r, 2 nr(r is odd number), the structure of equaton φ(x)=m will be got.