期刊文献+

基于相似度矩阵的谱聚类集成图像分割 被引量:4

Spectral cluster ensemble image segmentation based on similarity matrix
下载PDF
导出
摘要 针对谱聚类集成算法计算复杂度高,难以应用到大规模图像分割处理的问题,提出一种将MS和基于超边相似度矩阵的谱聚类集成算法(HSMCESA)相结合的彩色图像分割算法(MS-HSMCESA)。首先,采用MS算法对彩色图像进行预分割,计算分割得到的每个区域的所有像素的彩色向量的平均值,以此作为HSMCESA的输入。在HSMCESA的谱分解过程中,通过矩阵变换对特征值分解进行近似求解,大大降低了算法的时间复杂度。对比实验表明:MS-HSMCESA较MS-Kmeans和MS-Ncut算法能获得更好的分割质量。 Aiming at problem that spectral cluster ensemble algorithm is hard to be applied in large scale image segmentation processing because of high computational complexity, a new color image segmentation method combining mean shift (MS) and Hyperedges' similarity matrix-based custer ensemble spectral algorithm (HSMCESA) named MS-HSMCESA is proposed. First, some regions are obtained through pre-segmentation by MS algorithm. The average value of color vectors in each region are considered as input of HSMCESA. Through matrix transformation, it computes eigenvalues of a small matrix to obtain the eigenvalues of the similarity matrix to reduce the time complexity. Experimental results show that MS-HSMCESA can always obtained better image segmentation quality than MS-Kmeans and MS-Ncut algorithm.
出处 《传感器与微系统》 CSCD 北大核心 2013年第10期21-23,26,共4页 Transducer and Microsystem Technologies
基金 黑龙江省教育厅科学技术研究项目(12511146) 国家自然科学基金资助项目(60975042)
关键词 图像分割 MS算法 谱聚类 聚类集成 image segmentation mean shift(MS) algorithm spectral clustering cluster ensemble
  • 相关文献

参考文献11

  • 1Fukunaga K, Hostetler L D. The estimation of the gradient of adensity function,with applications in pattern recognition [ J ].IEEE Transactions on Information Theory ,1975 ,21 (1) :32 —40. 被引量:1
  • 2Cheng Y. Mean shift, mode seeking, and clustering[ J]. IEEETransactions on Pattern Analysis and Machine Intelligence, 1995,17(8) :790 -799. 被引量:1
  • 3Comaniciu D,Meer P. Mean shift: A robust approach toward fea-ture space analysis [ J ]. IEEE Transactions on Pattern Analysisand Machine Intelligence ,2002 ,24(5) :603 —619. 被引量:1
  • 4Collins R T. Mean shift blob tracking through scale space[ C]//IEEE Computer Society Conference on Computer Vision and Pa-tten Recognition,Pittsburgh,PA,USA ,2003 :234 —240. 被引量:1
  • 5Yang L,Meer P,Foran D J. Multi class segmentation using a uni-fied framework over mean shift patches [ C ]// IEEE Computer So-ciety Conference on Computer Vision and Patten Recognition,2007:1 -8. 被引量:1
  • 6Ning J F, Zhang L, Zhang D, et al. Robust mean shift trackingwith corrected background-weighted histogram [ J ]. Computer Vi-sion, IET,2012 ,6( 1) :62 一 69. 被引量:1
  • 7Shi J,Malik J. Normalized cuts and image segmentation [ J ].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8) :888 -905. 被引量:1
  • 8Strehl A,Ghosh J. Cluster ensembles—A knowledge reuse frame-work for combining partitions[ J]. The Journal of Machine Lear-ning Research,2002,3(1) :583 —617. 被引量:1
  • 9徐森,卢志茂,顾国昌.使用谱聚类算法解决文本聚类集成问题[J].通信学报,2010,31(6):58-66. 被引量:15
  • 10Fiedler M. Algebraic connectivity of graphs [ J ]. CzechoslovakMathematical Journal, 1973 ,23(98) :298 —305. 被引量:1

二级参考文献5

共引文献14

同被引文献34

  • 1冯玉才,宋恩民.彩色地图图象的聚色算法研究[J].软件学报,1996,7(8):466-470. 被引量:19
  • 2章毓晋.图像分割[M].北京:科学出版社,2001.. 被引量:577
  • 3Kanungo T, Mount D, Netanyahu N, et al. An efficient k- means clustering algorithm: analysis and implementation[ J]. IEEE Transactions on Pattern Analysis on Machine Intelligence ,2002,24(7 ) :881-892. 被引量:1
  • 4Baillard C, Hellier P, Barillot C. Segmentation of brain 3D M R images using level sets and dense registration [ J ]. Medical Image Analysis,2001,5 ( 3 ) : 185-194. 被引量:1
  • 5Liu H Q,Jiao L C, Zhao F. Non-local spatial spectral clustering for image segmentation [ J ]. Neurocomputing, 2010,74 (3) :461-471. 被引量:1
  • 6Bai X D, Cao Z G, Wang Y, et al. Image segmentation using modified SLIC and Nystrom based spectral clustering[ J ]. Optik-lnternational Journal for Light and Electron Optics,2014, 125 (16) :4302-4307. 被引量:1
  • 7Filippone M,Camastra F, Masulli F, et al. A survey of kernel and spectral methods for clustering [ J ]. Pattern Recognition, 2008,41 ( 1 ) : 176-190. 被引量:1
  • 8Set R,Hcer E, A new appach ta the reconstruction of eon- tour lines etraeted from topographic maps [ J ]. Joal of Visual Communieation and Image Representation, 2012,23 (4) : 642 -- 647. 被引量:1
  • 9Haneer E, Samet R. Advanced contour reconnection in scanned topographic maps[ C]//IEEE International Conference on Appli- cation Information and Communication Tecihnologies,2011:1-5. 被引量:1
  • 10Ebi N Lauterbach B Anheier W. An image analysis system for automatic data acquisition m colored scanned maps [ J ]. Ma- chine Vision and Applieations, 1994,7 ( 3 ) : 148 -164. 被引量:1

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部