期刊文献+

Comparison of signal reconstruction under different transforms

基于不同变换下的信号重建性能的比较(英文)
下载PDF
导出
摘要 A newalgorithm, called Magnitude Cut, to recover a signal from its phase in the transform domain, is proposed.First, the recovery problem is converted to an equivalent convex optimization problem, and then it is solved by the block coordinate descent( BCD) algorithm and the interior point algorithm. Finally, the one-dimensional and twodimensional signal reconstructions are implemented and the reconstruction results under the Fourier transform with a Gaussian random mask( FTGM), the Cauchy wavelets transform( CWT), the Fourier transform with a binary random mask( FTBM) and the Gaussian random transform( GRT) are also comparatively analyzed. The analysis results reveal that the M agnitude Cut method can reconstruct the original signal with the phase information of different transforms; and it needs less phase information to recover the signal from the phase of the FTGM or GRT than that of FTBM or CWT under the same reconstruction error. 提出了一种新的算法——Magnitude Cut算法,用于从信号的变换域的相位来恢复信号.首先将重建问题等价转换为一个凸优化问题,然后通过块坐标下降算法(BCD)和内点法解决原始信号重建问题.最后,实现了一维和二维信号的重建,并对先通过高斯随机掩膜再进行傅里叶变换(简称FTGM),柯西小波变换(CWT)相位,先通过二值随机掩膜再进行傅里叶变换(简称FTBM),高斯随机变换(GRT)相位的信号重建结果做了比较分析.分析结果表明,Magnitude Cut算法可以完成已知信号不同变换域相位的信号重建,并且在相同的重建误差下,从FTGM和GRT相位信息重建信号比从FTBM和CWT需要的相位数目更少.
出处 《Journal of Southeast University(English Edition)》 EI CAS 2015年第4期474-478,共5页 东南大学学报(英文版)
基金 The National Natural Science Foundation of China(No.61201344 61271312 11301074) the Specialized Research Fund for the Doctoral Program of Higher Education(No.20110092110023 20120092120036) the Program for Special Talents in Six Fields of Jiangsu Province(No.DZXX-031) the Natural Science Foundation of Jiangsu Province(No.BK2012329 BK2012743) the United Creative Foundation of Jiangsu Province(No.BY2014127-11) the"333"Project(No.BRA2015288)
关键词 MagnitudeCut algorithm signal reconstruction different transforms convex optimization phase information MagnitudeCut算法 信号重建 不同变换 凸优化 相位信息
  • 相关文献

参考文献15

  • 1Hayes M, Lim J, Oppenheim A V. Signal reconstruction from phase or magnitude [ J ]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1980, 28 (6) : 672 - 680. 被引量:1
  • 2Levi A, Stark H. Signal restoration from phase by projec- tions onto convex sets [ J]. Journal of the Optical Society of America, 1983, 73(6) :810-822. 被引量:1
  • 3Behar J, Porat M, Ze.evi Y. Image reconstruction from localized phase [ J ]. IEEE Transactions on Signal Pro- cessing, 1992, 40(4) :736-743. 被引量:1
  • 4Hua G, Orchard M T. Image reconstruction from the phase or magnitude of its complex wavelet transform [ C ]//IEEE International Conference on Acoustics, Speech and Signal Processing. Las Vegas, USA, 2008: 3261 - 3264. 被引量:1
  • 5Loveimi E, Ahadi S M. Objective evaluation of magni- tude and phase only spectrum based reconstruction of the speech signal [ C ]//Proceedings of the 4th International Symposium on Communications, Control and Signal Pro- cessing (ISCCSP). Limassol, Cyprus, 2010:1-4. 被引量:1
  • 6Boufounos P T. Sparse signal reconstruction from phase- only measurements [ C]//Proceedings of the lOth Inter-national Conference on Sampling Theory and Applica- tions. Bremen, Germany, 2013:1 -5. 被引量:1
  • 7Candes E, Strohmer T, Voroninski V. PhaseLift: Exact and stable signal recovery from magnitude measurements via convex programming [ J ]. Communications on Pure and Applied Mathematics, 2013, 66 ( 8 ) : 1241 - 1274. 被引量:1
  • 8Waldspurger I, Aspremont A D, Mallat S. Phase recov- ery, maxcut and complex semidefinite programming [ J ]. Mathematical Programming, 2015, 149(1/2) :47 - 81. 被引量:1
  • 9Boyd S, Vandenberghe L. Convex optimization [ M ]. Cambridge: Cambridge University Press, 2004. 被引量:1
  • 10Bartolini I, Ciaccia P, Patella M. Warp: accurate retriev- al of shapes using phase of Fourier descriptors and time warping distance [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27 ( 1 ) : 142 - 147. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部