期刊文献+

选择性聚类融合研究进展 被引量:3

Study on clustering ensemble selection
下载PDF
导出
摘要 传统的聚类融合方法通常是将所有产生的聚类成员融合以获得最终的聚类结果。在监督学习中,选择分类融合方法会获得更好的结果,从选择分类融合中得到启示,在聚类融合中应用这种方法被定义为选择性聚类融合。对选择性聚类融合关键技术进行了综述,讨论了未来的研究方向。 Traditional clustering ensemble combines all of the available clustering partitions to get the final cluster-ing result. But in supervised classification area, it has been known that selective classifier ensembles can always achieve better solutions. Following the selective classifier ensembles, the question of clustering ensemble is defined as clustering ensemble selection. The paper introduces the concept of clustering ensemble selection, gives the survey of clustering ensemble selection algorithms and discusses the future directions of clustering ensemble selection.
出处 《计算机工程与应用》 CSCD 2012年第10期1-5,15,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.60774023) 湖南省自然科学基金(No.06JJ50143)
关键词 聚类融合 选择性聚类融合 选择策略 融合函数 clustering ensemble clustering ensemble selection selection strategy consensus function
  • 相关文献

参考文献37

  • 1Han Jiawei,Kamber M.Data mining concepts and tech-niques[M].Beiing:China Machine Press,2001. 被引量:1
  • 2Berkhin P.A survey of clustering data mining techniques[J].Grouping Multidimensional Data,2002:25-71. 被引量:1
  • 3孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008(1):48-61. 被引量:1079
  • 4阳琳贇,王文渊.聚类融合方法综述[J].计算机应用研究,2005,22(12):8-10. 被引量:28
  • 5Azimi J,Fern Xiaoli.Adaptive cluster ensemble selection[C]//Proceedings of International Joint Conference on Artifi-cial Intellegence(IJCAI2009),2009:993-997. 被引量:1
  • 6Strehl A,Ghosh J.Cluster ensemble-a knowledge reuse framework for combining Multiple partitions[C]//Proc Conference on Artificial Intelligence(AAAI2002),2002:93-98. 被引量:1
  • 7Topchy A,Jain A K,Punch W.A mixture model for clus-tering ensembles[C]//Proceedings of the4th SIAM Inter-national Conference on Data Mining,2004:379-390. 被引量:1
  • 8Fern X,Lin Wei.Cluster Ensemble Selection[J].Statistical Analysis and Data Mining,2008,1(3):128-141. 被引量:1
  • 9Hong Yi,Kwong Sam,Wang Hanli,et al.Resampling-based selective clustering ensembles[J].Pattern Recognition Let-ters,2009,30(3):298-305. 被引量:1
  • 10Hadjitodorov S,Kuncheva L I,Todorova L P.Moderate diversity for better cluster ensembles[J].Information Fu-sion Journal,2006,7(3):264-275. 被引量:1

二级参考文献84

共引文献1211

同被引文献42

  • 1唐伟,周志华.基于Bagging的选择性聚类集成[J].软件学报,2005,16(4):496-502. 被引量:95
  • 2阳琳贇,王文渊.聚类融合方法综述[J].计算机应用研究,2005,22(12):8-10. 被引量:28
  • 3战学钢,姚天顺.基于语义分析的标题分类方法[C]∥中文信息处理国际会议论文集.北京:清华大学出版社,1998:321-324. 被引量:2
  • 4STREHL A, GHOSH J. Cluster ensemble:a knowledge reuse framework for combining multiple partitions [ J ]. Journal on Machine Learning Research,2002,3(3 ) :583-617. 被引量:1
  • 5MIMAROGLU S, ERDIL E. Combining multiple clusterings using similarity graph [ J ]. Pattern Recognition ,2011,44, ( 3 ) :694-703. 被引量:1
  • 6WANG Xi, YANG Chun-yu, ZHOU Jie. Clustering aggregation by probability accumulation [ J ]. Pattern Recognition, 2009,42 ( 5 ) : 668-675. 被引量:1
  • 7ZHI Wen-yu, HAU S W, JANE Y, et al. Hybrid cluster ensemble framework based on the random combination of data transformation operators[ J]. Pattern Recognition ,2012,45, (5) :1826-1837. 被引量:1
  • 8ZHANG Shao-hong, WONG H S, SHEN Ying. Generalized adjusted rand indices for cluster ensembles [ J]. Pattern Recognition,2012, 45(6) :2214-2226. 被引量:1
  • 9FERN X, LIN Wei. Cluster ensemble selection[ J]. Statistical Analysis and Data Mining,2008,1 (3) :128-141. 被引量:1
  • 10HONG Yi, KWONG S, WANG Han-li, et al. Resampling-based selective clustering ensembles [ J ]. Pattern Recognition Letters, 2009,30(3 ) :298-305. 被引量:1

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部