期刊文献+

基于改进谱聚类算法在图像分割中的应用 被引量:1

Application of improved spectral clustering algorithm in image segmentation
下载PDF
导出
摘要 为解决谱聚类算法应用于图像分割时,相似矩阵内存占用较大甚至满溢以及后续计算量大的问题,利用Nystrom方法随机获取一部分样本点,根据样本点和样本点、样本点和非样本点2种相似关系近似表征所有像素点的相似性,得到原图像的近似相似矩阵。在构建上述所需2种相似关系的相似矩阵时,距离度量采用余弦函数。结果表明,采用近邻传播聚类算法代替k-means算法对得到的低维向量子空间聚类,克服了聚类过程对初始值的敏感性,得到的分割结果较稳定,4幅真实图片也验证了研究算法的优越性。改进的谱聚类算法为图像分割的稳定性研究提供了依据。 To solve the problem of large usage of the similar matrix memory,even overflowing,and the large amount of calculation when spectral clustering algorithm is applied in image segmentation,a part of sample points are obtained by using the Nystrom method,according to the two similarity relations between sample points and sample points,sample points and non-sample points to get the similarity relation of all pixel points,then the approximate similarity matrix of the original image is got. In building the two block similar matrixs required in Nystrom,cosine function is used to overcome the absoluteness of Euclidean distance in the distance measurement.In this paper,the nearest neighbor propagation clustering algorithm is used to replace the k-means algorithm to overcome the sensitivity to the initial value in the clustering process,thus obtaining a more stable effect. The experimental results of the 4 real images show that the method is far superior,and the improved spectral clustering algorithm provides reference for the stable study of image segmentation.
机构地区 中北大学理学院
出处 《河北工业科技》 CAS 2018年第1期55-60,共6页 Hebei Journal of Industrial Science and Technology
基金 国家自然科学基金(61601412 61571404 61471325) 山西省自然科学基金(2015021099)
关键词 图像处理 图像分割 谱聚类 NYSTROM方法 余弦距离 AP算法 image processing image segmentation spectral clustering Nystrom method cosine distance AP algorithm
  • 相关文献

参考文献5

二级参考文献56

  • 1李学佳.图像处理技术应用于纺织工业的最新动态[J].毛纺科技,2005,33(7):58-61. 被引量:6
  • 2田铮,李小斌,句彦伟.谱聚类的扰动分析[J].中国科学(E辑),2007,37(4):527-543. 被引量:33
  • 3章毓晋.图像分割[M].北京:科学出版社,2001.. 被引量:577
  • 4Kanungo T, Mount D M, Netanyahu N S, et al. An efficient k-means clustering algorithm: Analysis and implementation. IEEE Trans Pattern Anal Mach Intell, 2002, 24(7): 881-892 被引量:1
  • 5Chen C W, Luo J, Parker K J. Image segmentation via adaptive k-mean clustering and knowledge-based morphological operations with biomedical applications. IEEE Trans Image Process, 1998, 7(12): 1673-1683 被引量:1
  • 6Shen S, Sandham W, Granat M, et al. MRI fuzzy segmentation of brain tissue using neighborhood attraction with neural-network optimization. IEEE T llft Technol Biomed, 2005, 9(3): 459-467 被引量:1
  • 7Zhang Y, Brady M, Smith S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging, 2001, 20(1): 45-57 被引量:1
  • 8Pal S K, Mitra P. Multispectral image segmentation using the rough-set-initialized EM algorithm. IEEE Trans Geosci Remote Sensing, 2002, 40(11): 2495-2501 被引量:1
  • 9Yin H, Allinson N M. Unsupervised segmentation of textured images using a hierarchical neural structure. Electron Lett, 1994, 30(22): 1842-1843 被引量:1
  • 10Meila M, Xu L. Multiway Cuts and Spectral Clustering. University of Washington Technical Report 442. 2003 被引量:1

共引文献147

同被引文献8

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部