期刊文献+

基于快速谱聚类的图像分割算法 被引量:6

Image segmentation based on fast spectral clustering algorithm
下载PDF
导出
摘要 设计了一种基于快速谱聚类的图像分割算法,该算法利用余弦相似度构造相似度矩阵,避免了传统谱聚类算法中尺度因子的精确设置问题,提高了算法效率.在谱映射的过程中,该算法采用了Nystrm逼近策略,降低了谱聚类算法的复杂度和内存消耗.在Berkeley图像库上的图像分割实验证明了算法的有效性. An image segmentation approach based on a fast spectral clustering algorithm is proposed, in which cosine similarity is used to attain similarity matrix. As a result, the problem of accurately setting the scale factor in the traditional spectral clustering algorithm is avoided, and the efficiency of the algorithm is improved. To efficiently apply the algorithm to image segmentation, Nystrom approximation strategy is used in the course of spectral mapping to reduce the computation complexity and memory consumption. Experimental results on Berkeley image database show the validitv of the algorithm.
出处 《应用科技》 CAS 2012年第2期26-30,共5页 Applied Science and Technology
基金 国家自然科学基金资助项目(60975042)
关键词 图像分割 谱聚类 余弦相似度 Nystrm逼近 image segmentation spectral clustering cosine similarity Nystrom approximation
  • 相关文献

参考文献14

  • 1TAN P N,STEINBACH M,KUMAR V. Introduction to data mining[M].Toronto:Addison-Wesley Longman,2005.16-21. 被引量:1
  • 2孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008(1):48-61. 被引量:1079
  • 3张向荣,骞晓雪,焦李成.基于免疫谱聚类的图像分割[J].软件学报,2010,21(9):2196-2205. 被引量:32
  • 4DING S;ZHANG Liwen;ZHANG.Yu.Research on spectral clustering algorithms and prospects[A]四川成都,2010149-153. 被引量:1
  • 5BERRY M W. Large-scale sparse singular value computations[J].The International Journal of Supercomputer Applications,1992,(01):13-49. 被引量:1
  • 6NG A,JORDAN M,WEISS Y. On spectral clustering analysis and an algorithm[M].Cambridge,MA:The MIT Press,2002.849-856. 被引量:1
  • 7MARTIN D,FOWLKES C,TAL D. A database of human segmented natural images and its application to evaluating segmnentation algorithms and measuring ecological statistics[A].Los Alamitos,USA,2001.416-423. 被引量:1
  • 8TAO W,JIN Hai,ZHANG Yimin. Color image segmentation based on mean shift and normalized cuts[J].IEEE Transactions on Systems Man and Cybernetics-Part B:Cybernetics,2007,(05):1382-1388. 被引量:1
  • 9COMANICIU D,MEER P. Mean shift:a robust approach toward feature space analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,(05):603-619.doi:10.1109/34.1000236. 被引量:1
  • 10SHI J,MALIK J. Normalized cuts and image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,(08):888-905.doi:10.1109/34.868688. 被引量:1

二级参考文献17

  • 1李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 2田铮,李小斌,句彦伟.谱聚类的扰动分析[J].中国科学(E辑),2007,37(4):527-543. 被引量:33
  • 3Kanungo T, Mount D M, Netanyahu N S, et al. An efficient k-means clustering algorithm: Analysis and implementation. IEEE Trans Pattern Anal Mach Intell, 2002, 24(7): 881-892 被引量:1
  • 4Chen C W, Luo J, Parker K J. Image segmentation via adaptive k-mean clustering and knowledge-based morphological operations with biomedical applications. IEEE Trans Image Process, 1998, 7(12): 1673-1683 被引量:1
  • 5Shen S, Sandham W, Granat M, et al. MRI fuzzy segmentation of brain tissue using neighborhood attraction with neural-network optimization. IEEE T llft Technol Biomed, 2005, 9(3): 459-467 被引量:1
  • 6Zhang Y, Brady M, Smith S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging, 2001, 20(1): 45-57 被引量:1
  • 7Pal S K, Mitra P. Multispectral image segmentation using the rough-set-initialized EM algorithm. IEEE Trans Geosci Remote Sensing, 2002, 40(11): 2495-2501 被引量:1
  • 8Yin H, Allinson N M. Unsupervised segmentation of textured images using a hierarchical neural structure. Electron Lett, 1994, 30(22): 1842-1843 被引量:1
  • 9Meila M, Xu L. Multiway Cuts and Spectral Clustering. University of Washington Technical Report 442. 2003 被引量:1
  • 10Shi J, Malik J. Motion Segmentation and Tracking Using Normalized Cuts. University of California at Berkeley Technical Report UCB/CSD-97-962. 1997 被引量:1

共引文献1117

同被引文献52

  • 1李存军,王纪华,刘良云,王人潮.基于数字照片特征的小麦覆盖度自动提取研究[J].浙江大学学报(农业与生命科学版),2004,30(6):650-656. 被引量:53
  • 2闫成新,桑农,张天序.基于图论的图像分割研究进展[J].计算机工程与应用,2006,42(5):11-14. 被引量:33
  • 3中国气象局.农业气象观测规范(上卷)[M].北京:气象出版社,1993:165-166. 被引量:15
  • 4YU Huichun, WANG Jun. Discrimination of longjing greentea grade by electronic nose [J].Sensors and Actuators B, 2007, 122: 134-140. 被引量:1
  • 5ALEIXANDRE M, LOZANO J, GUITERREZ J, et al. Portable e-nose to classify different kinds of wine [ J ]. Sensors and Actuators B, 2008, 131 : 71-76. 被引量:1
  • 6KIM D, KIM D H, CHANG S. Application of probabilistic neural network to design breakwater armor blocks [ J ]. Ocean Engineering, 2008, 35: 294-300. 被引量:1
  • 7王秀芳.主要农作物生长特征参数自动化观测技术研究[D].成都:成都信息工程大学,2012. 被引量:2
  • 8Yu Z H, Cao Z G, Wu X, et al. Automatic image-based detection technology for two critical growth stages of maize : emergence and three-leaf stage [ J ]. Agricultural and Forest Meteorology, 2013,174 : 65 - 84. 被引量:1
  • 9Bai X D,Can Z G,Wang Y,et al. Morphology Based Field Rice Den- sity Detection from Rice Transplant stage to Rice Jointing Stage[ J]. Proc. of SP1E ,2013 :8919. 被引量:1
  • 10Hu M Q, Mao F, Sun H, et al. Study of normalized difference vegeta- tion index variation and its correlation with climate factors in the three-river-souree region [ J ]. International Journal of Applied Earth Observation and Geoinformation ,2011,13 ( 1 ) :24 - 33. 被引量:1

引证文献6

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部