期刊文献+

对翻滚非合作目标终端逼近的姿轨耦合退步控制 被引量:8

Coupled backstepping control for spacecraft to approach with a tumbling non-cooperative object during the final phase
下载PDF
导出
摘要 为在空间操控任务中实施对翻滚非合作目标的安全逼近与抓捕,论文建立了描述航天器近距离相对运动的六自由度动力学模型,通过对模型的分析,提出了摄动引起的耦合和动力学耦合.针对模型的非线性和时变性,对非线性高阶项进行多步递推得出系统化的积分退步控制器,并基于李雅普诺夫稳定性理论证明了控制器的全局渐进稳定.考虑到失控目标的旋转特性,提出一种沿最大惯量轴方向的直线型同步自旋逼近策略以保证航天器在逼近过程中的安全性.通过数值仿真验证了逼近策略的正确性以及控制律的有效性. To insure the safety of autonomous approaching and capturing of a non-cooperative tumbling target in the on-orbit operating missions,6 DOF dynamics model of relative translation and rotation is established to describe the relative motion of two spacecrafts in close distance,and the perturbation induced coupling and dynamic coupling existing in the model are presented to make clear what the coupling effect is.Due to the effects of time-varying and nonlinear terms in the model,the systemized integrator backstepping controller is derived after multi-step recursion with regard to the nonlinear high-order terms.The stability of the controller is proved to be global asymptotic stable based on the Lyapunov's stability theory.With the consideration of rotating characteristic of the target satellite,a linear synchronization rotating approach strategy along the maximum inertial axes is presented to ensure the safety during the final approach.The validity of approach strategy and the effectiveness of controller is verified by the numerical simulation.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2013年第1期94-100,共7页 Journal of Harbin Institute of Technology
基金 国家自然科学基金资助项目(11172235 61004124)
关键词 自主逼近策略 翻滚非合作目标 耦合动力学 退步控制 autonomous approach strategy tumbling non-cooperative target coupled dynamics backstepping control
  • 相关文献

参考文献12

  • 1李九人,李海阳,唐国金.对无控旋转目标逼近的自适应滑模控制[J].宇航学报,2011,32(4):815-822. 被引量:13
  • 2王剑颖,梁海朝,孙兆伟.基于对偶数的相对耦合动力学与控制[J].宇航学报,2010,31(7):1711-1717. 被引量:16
  • 3S. Matsumoto,S. Jacobsen,S. Dubowsky,Y. Ohkami.Approach Planning and Guidance for Uncontrolled Rotating Satellite Capture Considering Collision Avoidance[].Proceeding of the th International Symposium on Artificial Intelligence Robotics and Automation in Space: i-SAIRAS.2003 被引量:1
  • 4Zhanhua Ma,Ou Ma,Banavara N. Shashikanth.Optimal Control for Spacecraft to Rendezvous with a Tumbling Satellite in a Close Range[].Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems.2006 被引量:1
  • 5Kamesh S,Sam W.Nonlinear Control of Motion Synchroni-zation for Satellite Proximity Operations[].Journal of Guid-anceControl and Dynamics.2008 被引量:1
  • 6WELSH S J,SUBBARAO K.Adaptive synchronizationand control of free flying robots for capture of dynamicfree-floating spacecrafts. AIAA/AAS Astrodynam-ics Specialist Conference and ExhibitAIAA 2004-5298 . 被引量:1
  • 7F. Aghili.Optimal Control for Robotic Capturing and Passivation of a Tumbling Satellite with Unknown Dynamics[].AIAA Guidance Navigation and Control Conference and Exhibit.2008 被引量:1
  • 8Xin Ming,Pan Hejia.Nonlinear Optimal Control ofSpacecraft Approaching a Tumbling Target[].Aero-space Science and Technology.2011 被引量:1
  • 9MATSUMOTO S.Fly-by approach and guidance foruncontrolled rotating satellite capture[].The AIAAGuidanceNavigationand Control Conference andExhibit.2003 被引量:1
  • 10TIMMONS K K.Approach and capture for autonomousrendezous and docking[].Aerospace Conference IEEE.2008 被引量:1

二级参考文献27

  • 1邹晖,陈万春,殷兴良.几何代数及其在飞行力学中的应用[J].飞行力学,2004,22(4):60-64. 被引量:6
  • 2荆武兴,徐世杰.Nonlinear Attitude Tracking Control of a Spacecraft with Thrusters Based on Error Quaternions[J].Chinese Journal of Aeronautics,2002,15(3):129-138. 被引量:6
  • 3Gaulocher S.Modeling the coupled translational and rotational relative dynamics for formation flying control[C].AIAA Guidance,Navigation,and Control Conference and Exhibit,San Francisco,USA,2005. 被引量:1
  • 4Sinclair A J,Hurtado J E,Junkins J L.Application of cayley form to general spacecraft motion[J].Journal of Guidance,Control,and Dynamics,2006,29(2):368-373. 被引量:1
  • 5Ploen S R,Hadaegh F Y,Scharf D P.Rigid body equations of motion for modeling and control of spacecraft formations-part 1[C].Proceeding of the 2004 American Control Conference,Boston,USA,2004. 被引量:1
  • 6Lennox S E.Coupled orbital and attitude control simulations for spacecraft motion[C].The 2004 AIAA Region I-MA Student Conference,Blacksburg,USA,2004. 被引量:1
  • 7Stansbery D T,Cloutier J R.Position and attitude control of a spacecraft using the state-dependent riccati equation technique[C].Proceedings of the American Control Conference,Chicago,USA,2000. 被引量:1
  • 8Pan H Z,Wong H,Kapila V.Output feedback control for spacecraft with coupled translation and attitude dynamics[C].43rd IEEE Conference on Decision and Control,Atlantis,Paradise Island,2004. 被引量:1
  • 9XIN M,Balakrishnan S N,Stansbery D T.Spacecraft position and attitude control with θ-D technique[C].42nd AIAA Aerospace Sciences Meeting and Exhibit,Reno,Nevada USA,2004. 被引量:1
  • 10Wong H,Pan H Z,Kapila V.Output feedback control for spacecraft formation flying with coupled translation and attitude dynamics[C].Proceedings of the American Control Conference,Portland,USA,2005. 被引量:1

共引文献26

同被引文献133

引证文献8

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部