期刊文献+

基于改进谱聚类的图像分割算法 被引量:6

Image segmentation based on improved spectral clustering algorithm
下载PDF
导出
摘要 针对传统谱聚类算法应用于图像分割时仅采用特征相似性信息构造相似性矩阵,而忽略了像素分布的空间临近信息的缺陷,提出一种新的相似性度量公式——加权欧氏距离的高斯核函数,充分利用图像特征相似性信息和空间临近信息构造相似性矩阵。在谱映射过程中,采用Nystrom逼近策略近似估计相似性矩阵及其特征向量,大大减少了求解相似性矩阵的运算复杂度,降低了内存消耗。对得到的低维向量子空间采用一种新型的聚类算法——近邻传播聚类算法进行聚类,避免了传统谱聚类采用K-means算法对初始值敏感,易陷入局部最优的缺陷。实验表明该算法获得了比传统谱聚类算法更好的分割效果。 Aiming at the default that when the traditional spectral clustering algorithm is applied to image segmentation, it only uses the feature similarity information to construct similarity matrix and ignores the spatial adjacency information defect of spatial distribution of pixels, this paper presents a new similarity measure formula—weighted euclidean distance of the Gaussian kernel function, making full use of image feature similarity information and spatial adjacency information to structure similarity matrix. In the spectral mapping process, using Nystrom approximation strategy to approximate simi-larity matrix and eigenvectors, it greatly reduces the computational complexity to solve similarity matrix and reduces the memory consumption. This paper applies a new clustering algorithm—Affinity Propagation to the low-dimensional sub-space. It avoids the defect that traditional spectral clustering using K-means algorithm can not automatically determine the number of clusters and it is sensitive to initial value and easy to fall into local optimum. The experiments prove that the proposed algorithm obtains better segmentation results than the traditional spectral clustering algorithm.
作者 关昕 周积林
出处 《计算机工程与应用》 CSCD 2014年第21期184-188,共5页 Computer Engineering and Applications
关键词 谱聚类 空间临近信息 相似性矩阵 Nystrom逼近策略 近邻传播聚类算法 spectral clustering spatial adjacency information similarity matrix Nystrom approximation Affinity Propa-gation(AP)algorithm
  • 相关文献

参考文献17

  • 1章毓晋.图像分割[M].北京:科学出版社,2001.. 被引量:577
  • 2Zhang Tianxu, Peng Jiaxiong, Li Zongjie.An adaptive image segmentation method with visual nonlinearity characteris- tics[J].IEEE Trans on Systems,Man,and Cybernetics, 1996, 26(4) : 619-627. 被引量:1
  • 3Shi Jianbo,Malik J.Normalized cut and image segmenta- tion[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22 (8) : 888-905. 被引量:1
  • 4Odobez J M, Gatica-perez D, Guillemot M.Video shot clustering using spectral methods[C]//Workshop on Con- tent Based Multimedia Indexing(CBMI),Rennes,2003. 被引量:1
  • 5Malik J,Belongie S,Leung T,et al.Contour and texture analysis for image segmentation[J].International Journal of Computer Vision,2001,43 ( 1 ) :7-27. 被引量:1
  • 6Chung F R K.Spectral graph theory[M].[S.l.]: American Mathematical Society, 1997 : 227-275. 被引量:1
  • 7Chang H,Yeung D Y.Robust path-based spectral cluster- ing[J].Pattern Recognition, 2008,41 ( 1 ) : 191-203. 被引量:1
  • 8王玲,薄列峰,焦李成.密度敏感的谱聚类[J].电子学报,2007,35(8):1577-1581. 被引量:61
  • 9蔡晓妍,戴冠中,杨黎斌.谱聚类算法综述[J].计算机科学,2008,35(7):14-18. 被引量:189
  • 10Meila M, Shi J.Leaming segmentation by random walks[C]// Advances in Neural Information Processing Systems, Vancouver, Canada, 2001 : 873-879. 被引量:1

二级参考文献59

  • 1刘涛,吴功宜,陈正.一种高效的用于文本聚类的无监督特征选择算法[J].计算机研究与发展,2005,42(3):381-386. 被引量:37
  • 2李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 3Frey B J,Dueck D.Clustering by passing messages between data points[J].Science,2007,315:972-976. 被引量:1
  • 4Jiang Wu,Ding Fei,Xiang Qiaoliang.An Affinity Propagation Based Method for Vector Quantization[EB/OL].(2007-10-11)[2008-01-21].http://arxiv.org/abs/0710.2037v2. 被引量:1
  • 5Frey B J,Dueck D.Non-metric affinity propagation for unsupervised image categorization[C]//Proc of IEEE 11th Int Conf on Computer Vision.Piscataway,NJ:IEEE,2007. 被引量:1
  • 6Li Yanjun,Chung M S,Holt J D.Text document clustering based on frequent word meaning sequences[J].Data & Knowledge Engineering,2008,61(1):381-404. 被引量:1
  • 7Van Rijsbergen C J.Information Retrieval[M].London:Butterworth,1979:22-28. 被引量:1
  • 8Aggrawal C C,Yu P S.Finding generalized projected clusters in high dimensional spaces[C]//Proc of 2000 ACM SIGMOD Int Conf on Management of Data.New York:ACM,2000. 被引量:1
  • 9Wu Xiangdong,Kumar V,Quinlan J R,et al.Top 10 algorithms in data mining[J].Knowledge and Information Systems,2008,14(1):1-37. 被引量:1
  • 10Kaski S,Kangas J,Kohonen T.Bibliography of self-organizing map (SOM) papers:1981-1997[J].Neural Computing Surveys,2002,1(3):1-156. 被引量:1

共引文献824

同被引文献52

引证文献6

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部