期刊文献+

结合K均值与Laplacian的聚类集成算法 被引量:1

CLUSTER ENSEMBLE INTEGRATING K-MEANS AND LAPLACIAN
下载PDF
导出
摘要 聚类集成可以有效提高传统聚类算法的精度,其关键问题在于如何根据聚类成员提供的信息获得更加优越的聚类结果。设计一种聚类集成算法,它结合K均值算法与基于拉普拉斯矩阵的谱聚类算法,充分利用聚类成员提供的属性信息与关系信息。为了降低算法计算复杂度,通过代数变换方法有效避免了大规模矩阵的特征值分解问题。在多组真实数据集上的实验结果表明,提出的算法优于其他聚类集成算法。 Cluster ensemble can effectively improve the accuracy of traditional clustering algorithms, whereupon the key problem lies in how to yield final superior result according to the information provided by cluster members. In this paper, we design a cluster ensemble method which makes full use of attribution information and relation information provided by cluster members and integrates the algorithms of K-means and Laplacian matrix-based spectral clustering. To reduce the computational complexity, we propose an algebraic transformation to avoid the eigenvalue decomposition problem of large-scale matrix. Results of experiment on several groups of real datasets demonstrate that the proposed algorithm outperforms other cluster ensemble algorithm.
出处 《计算机应用与软件》 CSCD 北大核心 2012年第10期69-70,140,共3页 Computer Applications and Software
基金 国家自然科学基金项目(60975042 41006057 61105057 61102105) 盐城工学院人才引进专项基金项目(XKR2011019)
关键词 聚类分析 聚类集成 K均值 拉普拉斯矩阵 Cluster analysis Cluster ensemble K-means Laplacian matrix
  • 相关文献

参考文献9

  • 1Tan P N,Steinbach M,Kumar V.Introduction to data mining[M].MA,USA:Addison-Wesley Longman Publishing Co.,Inc.Boston,2010. 被引量:1
  • 2Strehl A,Ghosh J.Cluster ensembles-a knowledge reuse framework for combining partitionings[J].The Journal of Machine Learning Re-search,2002,3:583-617. 被引量:1
  • 3徐森,卢志茂,顾国昌.使用谱聚类算法解决文本聚类集成问题[J].通信学报,2010,31(6):58-66. 被引量:15
  • 4Fred A,Lourengo A.Cluster ensemble methods:from single cluster-ings to combined solutions[M].Supervised and Unsupervised Ensem-ble Methods and their Applications.Berlin:Springer,2008:3-30. 被引量:1
  • 5Fern X Z,Brodley C E.Solving cluster ensemble problems by bipartite graph partitioning[C] //Proceedings of20th International Conference on Machine Learning Banff,Canada,2004. 被引量:1
  • 6唐伟,周志华.基于Bagging的选择性聚类集成[J].软件学报,2005,16(4):496-502. 被引量:95
  • 7Sevillano X,Alías F,SocoróJ C.BordaConsensus:a new consensus function for soft cluster ensembles[C] //Proceedings of the30th annu-al international ACM SIGIR.New York:ACM,2007.743-744. 被引量:1
  • 8王红军,李志蜀,成飏,周鹏,周维.基于隐含变量的聚类集成模型[J].软件学报,2009,20(4):825-833. 被引量:14
  • 9Wang F,Ding C,Li T.Integrated KL(K-means-Laplacian)Cluste-ring:A New Clustering Approach by Combining Attribute Data and Pairwise Relations[C] //Proceedings of2009SIAM International Con-ference on Data Mining.Sparks,United States.2009:38-48. 被引量:1

二级参考文献19

共引文献114

同被引文献3

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部