期刊文献+

基于局部密度构造相似矩阵的谱聚类算法 被引量:14

Local density-based similarity matrix construction for spectral clustering
下载PDF
导出
摘要 依据样本数据点分布的局部和全局一致性特征,提出了一种基于局部密度构造相似矩阵的谱聚类算法。首先通过分析样本数据点的分布特性给出了局部密度定义,根据样本点的局部密度对样本点集由密到疏排序,并按照设计的连接策略构建无向图;然后以GN算法思想为参考,给出了一种基于边介数的权值矩阵计算方法,经过数据转换得到谱聚类相似矩阵;最后通过第一个极大本征间隙出现的位置来确定类个数,并利用经典聚类方法对特征向量空间中的数据点进行聚类。通过人工仿真数据集和UCI数据集进行测试,实验结果表明本文谱聚类算法具有较好的顽健性。 According to local and global consistency characteristics of sample data points' distribution, a spectral clustering algorithm using local density-based similarity matrix construction was proposed. Firstly, by analyzing distribution characteristics of sample data points, the definition of local density was given, sorting operation on sample point set from dense to sparse according to sample points' local density was did, and undirected graph in accordance with the designed connection strategy was constructed; then, on the basis of GN algorithm's thinking, a calculation method of weight matrix using edge betweenness was given, and similarity matrix of spectral clustering via data conversion was got; lastly, the class number by appearing position of the first eigengap maximum was determined, and the classification of sample point set in eigenvector space by means of classical clustering method was realized. By means of artificial simulative data set and UCI data set to carry out the experimental tests, results show that the proposed spectral algorithm has better clustering capability.
出处 《通信学报》 EI CSCD 北大核心 2013年第3期14-22,共9页 Journal on Communications
基金 国家自然科学基金资助项目(61003054 61170020 61170124)~~
关键词 谱聚类 相似矩阵 局部密度 无向图构建 边介数 spectral clustering similarity matrix local density undirected graph building edge betweenness
  • 相关文献

参考文献16

二级参考文献180

共引文献337

同被引文献95

引证文献14

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部