期刊文献+

核正交判别局部正切空间对齐算法

Kernel Orthogonal Discriminant Local Tangent Space Alignment Algorithm
下载PDF
导出
摘要 针对现有的局部正切空间算法中存在的问题,文中提出一种基于核变换的特征提取方法——核正交判别局部正切空间对齐算法(KOTSDA).该算法首先利用核方法将人脸图像投影到一个高维非线性空间,提取其非线性信息;然后在目标函数中利用正切空间判别分析算法在保持样本的类内局部几何结构的同时最大化类间差异;最后添加正交约束,得到核正交判别局部正切空间对齐算法.该算法不需要经过PCA降维,有效避免判别信息的丢失,在ORL和Yale人脸库上的实验验证算法有效性. To address the drawbacks of the local tangent space alignment algorithm, a feature extraction method based on kernel transformation, kernel orthogonal discriminant local tangent space alignment algorithm (KOTSDA), is proposed. Firstly, the kernel mapping is performed to map the face data into a high dimensional nonlinear space and extract the nonlinear information. Then, tangent space discriminant analysis algorithm is used to preserve the intra-class local geometric structures and simultaneously maximize the inter-class difference in target function. Finally, KOTSDA is obtained with orthogonal constraints. It effectively avoids losing discriminant information which does not need to preprocess by PCA dimensional reduction. The experiments on ORL and Yale face databases demonstrate the effectiveness of the proposed algorithm.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2013年第7期673-679,共7页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金资助项目(No.61272258)
关键词 特征提取 局部正切空间对齐 核空间 流形学习 Feature Extraction, Local Tangent Space Alignment, Kernel Space, Manifold Learning
  • 相关文献

参考文献5

二级参考文献43

  • 1薛建中,闫相国,郑崇勋.用核学习算法的意识任务特征提取与分类[J].电子学报,2004,32(10):1749-1753. 被引量:10
  • 2庞彦伟,俞能海,沈道义,刘政凯.基于核邻域保持投影的人脸识别[J].电子学报,2006,34(8):1542-1544. 被引量:15
  • 3祝磊,朱善安.KSLPP:新的人脸识别算法[J].浙江大学学报(工学版),2007,41(7):1066-1069. 被引量:11
  • 4Gao Hui, Davis J W. Why Direct LDA is Not Equivalent to LDA. Pattern Recognition, 2006, 39(5): 1002-1006. 被引量:1
  • 5He Xiaofei, Niyogi P. Locality Preserving Projections// Trun S, Saul L K, Schfilkopf B, eds. Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2003, 16:585 - 591. 被引量:1
  • 6Yang Jian , Zhang D, Yang Jingyu. "Non-Locality" Preserving Projection and Its Application to Palmprint Recognition//Proc of the 9th International Conference on Control, Automation, Robotics and Vision. Singapore, Singapore, 2006 : 1 - 4. 被引量:1
  • 7Li Junbao, Pan J S, Chu Shuchuan. Kernel Class-Wise Locality Preserving Projection. Information Sciences, 2008, 178 ( 7 ) : 1825 - 1835. 被引量:1
  • 8Yang Jian, Frangi A F, Yang Jingyu, et al. KPCA Plus LDA: A Complete Kernel Fisher Discriminant Framework for Feature Extraction and Recognition. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27 (2) : 230 - 244. 被引量:1
  • 9Qu Yi, Xu Shizhong. Supervised Cluster Analysis for Microarray Data Based on Multivariate Gaussian Mixture. Bioinformatics, 2004, 20(12) : 1905 -1913. 被引量:1
  • 10Herrero J, Valencia A, Dopazo J. A Hierarchical Unsupervised Growing Neural Network for Clustering Gene Expression Patterns. Bioinformatics, 2001, 17(2) : 126 - 136. 被引量:1

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部