期刊文献+

保局性数据域描述单类分类器

Locality Preserving Data Domain Description One-class-classifier
下载PDF
导出
摘要 由于缺少对数据结构信息的考虑,现有的域描述型单类分类器得到的支撑面往往是次优解。因此,以支持向量数据描述(SVDD)算法为基础,通过一种简易的形式引入数据亲和因子以保持样本局部特性,提出保局性数据域描述分类器(LPDD),使成簇的数据作用被强化,而呈零星分布的数据影响力被削弱,引导分类支撑面自动靠近数据高密区而提高算法性能。此外,为适应大样本应用场合,采用序列最小优化算法进行模型参数调整。实验证明,所提算法无论在训练速率还是在分类性能上都优于SVDD。 In a support vector data description(SVDD),the compact description of target data was given in a hyper spherical model which was determined by a small portion of data called support vectors.Despite the usefulness of the conventional SVDD,however,it may not identify the optimal solution of target description due to neglecting the structure of the given data.In order to mitigate this problem,a novel one-class-classifier named locality preserving data domain description(LPDD) was proposed which takes the data density into account by using of affine factor.Besides,the sequential minimal optimization was adopted to adjust model parameters for applying in the large sample occasions.Experiments with various real data sets show promising results.
出处 《计算机科学》 CSCD 北大核心 2011年第11期208-212,共5页 Computer Science
基金 国家自然科学基金(61070043)资助
关键词 亲和因子 支持向量域描述 序列最小优化 单类分类器 Affine factor Support vector domain description Sequential minimal optimization One-class-classifier
  • 相关文献

参考文献5

二级参考文献62

  • 1许建华,张学工,李衍达.支持向量机的新发展[J].控制与决策,2004,19(5):481-484. 被引量:132
  • 2潘志松,倪桂强,谭琳,胡谷雨.异常检测中单类分类算法和免疫框架设计[J].南京理工大学学报,2006,30(1):48-52. 被引量:5
  • 3Tax D, Duin R P. Support vector domain description [J]. Pattern Recognition Letters, 1999, 200(11/13): 1191-1199 被引量:1
  • 4Bishop C. Novelty detection and neural network validation [C] //IEE Proc of Vision, Image and Signal Processing. 1994:217-222 被引量:1
  • 5Duda R O, Hart P E, Stork D G. Pattern Classification [M]. 2nd ed. New York: John Wiley & Sons, 2001 被引量:1
  • 6Lanckriet G R G, Ghaoui L E, Jordan M. Robust novelty detection with single-class MPM [C]//Advances in Neural Information Processing Systems. Cambridge: MIT Press, 2002:905-912 被引量:1
  • 7Tsang I W, James T K, Li S. Learning the kernel in Mahalanobis one-class support vector machines [C] //Proc of the Int Joint Conf on Neural Networks (IJCNN'06). Los Alamitos: IEEE Computer Seeiety, 2006:1169-1175 被引量:1
  • 8Wei X K, Huang G B, Li Y H. Mahalanobis ellipsoidal learning machine for one class classificationin[C]//Proc of the 6th Int Conf on Machine Learning and Cybernetics. Los Alamitos: IEEE Computer Seciety, 2007: 3528-3533 被引量:1
  • 9Juszczak P. Learning to recognise.. A study on one class classiifcation and active learning [D]. Delft: Delft University of Technology, 2006 被引量:1
  • 10Dolia A, Harris C, Shawe-Taylor J. Kernel ellipsoidal trimming [J]. Computational Statistics and Data Analysis, 2007, 52(1): 309-324 被引量:1

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部