期刊文献+

基于核的类别非局保留投影 被引量:4

Kernel Based Class-Wise Non-Locality Preserving Projection
原文传递
导出
摘要 提出一种线性特征提取方法——类别非局保留投影.并进行核扩张,称为基于核的类别非局保留投影.基于非局保留投影特征提取方法,类别非局保留投影采用类间信息指导特征提取,同时考虑样本的关系信息和类别信息,并通过核技巧实现原输入空间的非线性判别.通过对yeast和NCI基因表达数据进行特征提取,对文中方法进行测试和评价.实验结果表明,该方法能获得较高的识别率. A feature extraction method is proposed, namely class-wise non-locality preserving projection (CNLPP). The kernelized counterpart of CNLPP linear feature extractor is also established. Based on the linear feature extractor-non-locality preserving projection (NLPP), CNLPP utilizes between-class information to guide the procedure of feature extraction. CNLPP takes both the relation information and the class information into account. A kernel version of CNLPP, namely Kernel based CNLPP (KCNLPP), is developed by applying the kernel trick to CNLPP to enhance its performance on nonlinear feature extraction. Experiments on yeast gene expression data and NCI gene expression data are performed to test and evaluate the performance of the proposed algorithm, and the results show that KCNLPP achieves relatively high recognition accuracy.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2009年第5期769-773,共5页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金资助项目(No.60371044 60574039 60533010)
关键词 特征提取 非局保留投影 降维 基因表达数据 Feature Extraction, Non-Locality Preserving Projection, Dimensionality Reduction, Gene Expression Data
  • 相关文献

参考文献11

  • 1Hu Y C. Fuzzy Integral-Based Perception for Two-Class Pattern Classification Problems. Information Sciences, 2007, 177 ( 7 ) : 1673 - 1686. 被引量:1
  • 2Turk M, Pentland A. Eigenfaces for Recognition. Journal of Cognitive Neuroscience, 1991, 3( 1 ) : 71 - 86. 被引量:1
  • 3Prasad S, Bruce L M. Limitations of Subspace LDA in Hyperspectral Target Recognition Applications // Proc of the IEEE International Geoscience and Remote Sensing Symposium. Barcelona, Spain, 2007 : 4048 - 4052. 被引量:1
  • 4Gao Hui, Davis J W. Why Direct LDA is Not Equivalent to LDA. Pattern Recognition, 2006, 39(5): 1002-1006. 被引量:1
  • 5He Xiaofei, Niyogi P. Locality Preserving Projections// Trun S, Saul L K, Schfilkopf B, eds. Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2003, 16:585 - 591. 被引量:1
  • 6Yang Jian , Zhang D, Yang Jingyu. "Non-Locality" Preserving Projection and Its Application to Palmprint Recognition//Proc of the 9th International Conference on Control, Automation, Robotics and Vision. Singapore, Singapore, 2006 : 1 - 4. 被引量:1
  • 7Li Junbao, Pan J S, Chu Shuchuan. Kernel Class-Wise Locality Preserving Projection. Information Sciences, 2008, 178 ( 7 ) : 1825 - 1835. 被引量:1
  • 8赵峰,张军英.一种KPCA的快速算法[J].控制与决策,2007,22(9):1044-1048. 被引量:14
  • 9Yang Jian, Frangi A F, Yang Jingyu, et al. KPCA Plus LDA: A Complete Kernel Fisher Discriminant Framework for Feature Extraction and Recognition. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27 (2) : 230 - 244. 被引量:1
  • 10Qu Yi, Xu Shizhong. Supervised Cluster Analysis for Microarray Data Based on Multivariate Gaussian Mixture. Bioinformatics, 2004, 20(12) : 1905 -1913. 被引量:1

二级参考文献9

  • 1Schlkopf B,Smola A J,Müller K R.Nonlinear component analysis as a kernel eigenvalue problem[J].Neural Computation,1998,10(6):1299-1319. 被引量:1
  • 2Kim K I,Park S H,Kim H J.Kernel principal component analysis for texture classification[J].IEEE Signal Process Letters,2001,8(2):39-41. 被引量:1
  • 3Koutsogiannis G S,Soraghan J J.Selection of number of principal components for de-noising signals[J].Electron Letters,2002,38(13):664-666. 被引量:1
  • 4Darchapak C,Kanae S,Yang Z J.Kernel principal component regression with application to nonlinear prediction[R].Research Reports on Information Science Kyushu University,2003,8(1):19-23. 被引量:1
  • 5Rosipal R,Girolami M.An expectation-maximization approach to nonlinear component analysis[J].Neural Computation,2001,13(1):505-510. 被引量:1
  • 6Zheng W M,Zou C R,Zhao L.An improveld algorithm for kernel principal component analysis[J].Neural Processing Letters,2005,22(1):49-56. 被引量:1
  • 7Baudat G,Anouar F.Kernel-based methods and function approximation[C].Proc of the International Joint Conf on Neural Networks.Piscataway:Institute of Electrical and Electronics Engineers Inc,2001:1244-1249. 被引量:1
  • 8Cheng Y P.Theory of matrix[M].Xi'an:Northwest University Press,1989. 被引量:1
  • 9Mike S,Schlkopf B,Smola A J.Kernel PCA and de-noising in feature space[C].In Advances in Neural Information Processing Systems.Cambridge:MTI Press,1999:524-536. 被引量:1

共引文献13

同被引文献32

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部