期刊文献+

流形上的非线性判别K均值聚类 被引量:2

Nonlinear discriminant K-means clustering on manifold
下载PDF
导出
摘要 为提高具有流形结构的高维数据的聚类性能,提出非线性判别K均值聚类算法(NDisKmeans)。该方法通过引入流形上的谱正则化技术,将数据的低维嵌入表示成数据流形上平滑函数的线性组合,然后通过最大化低维空间中聚类类间的散度与总体散度的比值,来实现对高维数据的聚类。还设计了一种收敛的迭代求解方法来求解最优组合系数矩阵和聚类赋值矩阵。NDisKmeans方法由于考虑了数据的流形结构,克服了判别K均值算法中线性映射的不足,从而提高了对高维数据聚类的性能。最后在数据集上的广泛实验表明,NDisKmeans方法能有效实现对高维数据的聚类。 In order to improve the performance of clustering algorithm on high dimensional data by using the manifold structure,a novel clustering algorithm called Nonlinear Discriminant K-means Clustering(NDisKmeans) was proposed.By introducing the spectracl regularization technology,NDisKmeans first represented the desired low dimensional coordinates as linear combinations of smooth vectors predefined on the data manifold;then maximized the ratio between inter-clusters scatter and total scatter to cluster the high dimensional data.A convergent iterative procedure was devised to solute the matrix of the combination coefficient and clustering assignment matrix.NDisKmeans overcomed the limitation of linear mapping of DisKmeans algorithm;therefore,it significantly improved the clustering performance.The systematic and extensive experiments on UCI and real world data sets show the effectiveness of the proposed NDisKmeans method.
出处 《计算机应用》 CSCD 北大核心 2011年第12期3247-3251,3274,共6页 journal of Computer Applications
基金 国家自然科学基金资助项目(60603015 60970034) 河南省科技攻关计划项目(102102210509)
关键词 聚类 流形 K均值聚类 谱正则化 谱聚类 clustering manifold K-means clustering spectral regularization spectral clustering
  • 相关文献

参考文献22

  • 1yon LUXBURG U. A tutorial on spectral clustering[ J]. Statistics and Computing, 2007, 17(4) : 395 -416. 被引量:1
  • 2TORRE F D L, KANADE T. Discriminative cluster analysis[ C]// Proceedings of the 23rd International Conference on Machine Learn.ing. New York: ACM, 2006:241-248. 被引量:1
  • 3LI T, DING C. Adaptive dimension reduction using discriminant a- nalysis and k-means clustering[ C]//Proceedings of the 23rd Inter- national Conference on Machine Learning. New York: ACM, 2007: 521 -528. 被引量:1
  • 4JOLLIFFE I. Principal component analysis [ M]. Heidelberg : Springer, 2002. 被引量:1
  • 5TENENBAUM J, SILVA V, LANGFORD J. A global geometric framework for nonlinear dimensionality reduction [ J]. Science, 2000, 290(5500) : 2319 -2323. 被引量:1
  • 6ROWEIS S, SAUL L. Nonlinear dimensionality reduction by locally linear embedding[ J]. Science, 2000, 290(5500) : 2323 - 2326. 被引量:1
  • 7BELKIN M, NIYOGI P, Laplacian eigenmaps for dimensionality re- duction and data representation[J]. Neural Computation, 2003, 15 (6) : 1373 - 1396. 被引量:1
  • 8ZHAN Y, YIN J. Cluster preserving embedding[ C]// Proceedings of the 20th International Conference on Pattern Recognition. New York: IEEE, 2010:621-624. 被引量:1
  • 9YE J, ZHAN Z , WU M. Discriminative k-means for clustering [ C]// Advances in Neural Information Processing Systems. Cam- bridge: MIT Press. 2008: 1649- 1656. 被引量:1
  • 10NIE F, XU D, TSANG I W, et al. Spectral embedded clustering [ C]// Proceedings of the 21st International Jont Conference on Artifical Intelligence. San Francisco: Morgan Kaufmann Publishers, 2009:1181-1186. 被引量:1

同被引文献27

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部