期刊文献+

有监督核化邻域投影分析算法

Kernel-based Supervised Neighborhood Projection Analysis Algorithm
下载PDF
导出
摘要 通过将鉴别邻域嵌入分析算法扩展到非线性场景,提出了一种有监督核化邻域投影分析算法。该算法在目标函数中引入类别标签和线性投影矩阵,并利用核函数处理非线性数据。通过两种不同策略优化目标函数,可将该算法进一步细分为有监督核化邻域投影分析算法一及有监督核化邻域投影分析算法二。其中,在有监督核化邻域投影分析算法一中应用拉普拉斯搜索方向达到了较快的收敛速度并降低了计算复杂度。实验结果表明,所提算法对于复杂的数据流形具有较高的识别率,且与鉴别邻域嵌入分析等相关算法相比在有效性和鲁棒性方面的表现更为出色。 A new algorithm called KSNPA which exhibits a nonlinear form of discriminative elastic embedding (DEE) was proposed. KSNPA integrates class labels and linear projection matrix into the final objective function, as well as uses kernel function to deal with nonlinear embedding situation. According to two different strategies for optimizing the objective function, the algorithm is divided into kernel-based supervised neighborhood projection analysis algorithm 1 (KSNPA1) and supervised neighborhood projection analysis algorithm 2 (KSNPA2). Furthermore, a deliberately selected search direction, termed as Laplacian Direction, is applied in KSNPA1 for achieving faster convergence rate and lower computational complexit. Experimental results on several databases demonstrate that the proposed algorithm achieves powerful pattern revealing capability for complex manifold data. Moreover, the algorithm is more efficient and robust than DEE and related dimensionality reduction algorithms.
出处 《计算机科学》 CSCD 北大核心 2016年第6期312-315,324,共5页 Computer Science
基金 浙江省自然科学基金(LY15F030014) 国家自然科学基金(61379123) "十二五"国家科技支撑计划(2012BAD10B01)资助
关键词 弹性嵌入 核方法 投影分析 有监督学习 Elastic embedding, Kernel method, Projection analysis, Supervised learning
  • 相关文献

参考文献19

  • 1HUANG Jin-Jie,LV Ning,LI Shuang-Quan,CAI Yun-Ze.Feature Selection for Classificatory Analysis Based on Information-theoretic Criteria[J].自动化学报,2008,34(3):383-392. 被引量:3
  • 2Venna J,Pectone J,Nybo K,et al.Information retrieval perspective to nonlinear dimensionality reduction for data visualization[J].Journal of Machine Learning Research,2010,11(1):451-490. 被引量:1
  • 3YANG Wu-Yi,LIANG Wei,XIN Le,ZHANG Shu-Wu.Subspace Semi-supervised Fisher Discriminant Analysis[J].自动化学报,2009,35(12):1513-1519. 被引量:5
  • 4Alfaro C A,Aydin B,Valencia C E,et al.Dimension reduction in principal component analysis for trees[J].Computational Statistics & Data Analysis,2014,74:157-179. 被引量:1
  • 5Yang W,Wu H.Regularized complete linear discriminant analysis[J].Neurocomputing,2014,137:185-191. 被引量:1
  • 6Machado J T.Multidimensional scaling analysis of fractionalsystems[J].Computers & Mathematics with Applications,2012,64(10):2966-2972. 被引量:1
  • 7Tenenbaum J,Silva V,Langford J C.A global geometric framework for nonlinear dimensionality reduction[J].Science,2000,290:2319-2323. 被引量:1
  • 8Roweis S T,Lawrance K S.Nonlinear dimensionality reduction by locally linear embedding[J].Science,2000,290:2323-2326. 被引量:1
  • 9Yin X S,Chen S C,Hu E L.Regularized soft K-means for discriminant analysis[J].Neurocomputing,2013,103(1):29-42. 被引量:1
  • 10Maras K L,et al.Mental imagery scanning in autism spectrum disorder[J].Research in Autism Spectrum Disorders,2014,8(10):1416-1423. 被引量:1

二级参考文献57

  • 1Mardia K V, Kent J T, Bibby J M. Multivariate Analysis. New York: Academic Press, 1980. 被引量:1
  • 2Duda R O, Hart P E, Stork D G. Pattern Classification (Second Edition). New Jersey: Wiley Interscience, 2000. 被引量:1
  • 3Fukunaga K. Introduction to Statistical Pattern Recognition (Second Edition). New York: Academic Press, 1990. 被引量:1
  • 4Zhu X J, Ghahramani Z, Lafferty J. Semi-supervised learning using Gaussian fields and harmonic functions. In: Proceedings of the 12th International Conference on Machine Learning. Washington D. C., USA: ACM, 2003. 912-919. 被引量:1
  • 5Belkin M, Niyogi P, Sindhwani V. Manifold regularization: a geometric framework for learning from examples. Journal of Machine Learning Research, 2006, 7(11): 2399-2434. 被引量:1
  • 6Sindhwani V, Niyogi P, Belkin M. Beyond the point cloud: from transductive to semi-supervised learning. In: Proceedings of the 22nd International Conference on Machine Learning. Bonn, Germany: ACM, 2005. 824-831. 被引量:1
  • 7Zhou D, Bousquet O, Lal T N, Weston J, Scholkopf B. Learning with local and global consistency. Advances in Neural Information Processing Systems 16. Cambridge: MIT Press, 2003. 321-328. 被引量:1
  • 8Cai D, He X F, Han J W. Semi-supervised discriminant analysis. In: Proceedings of the llth IEEE International Conference on Computer Vision. Rio de Janeiro, Brazil: IEEE, 2007. 1-7. 被引量:1
  • 9Zha Z J, Mei T, Wang J D, Wang Z F, Hua X S. Graphbased semi-supervised learning with multiple labels. Journal of Visual Communication and Image Representation, 2009, 20(2): 97-103. 被引量:1
  • 10Zhao B, Wang F, Zhang C S, Song Y Q. Active model selection for graph-based semi-supervised learning. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. Las Vegas, USA: IEEE, 2008. 1881-1884. 被引量:1

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部