期刊文献+

一种改进的不相关空间算法及其在人脸识别中的应用 被引量:2

An Improved Uncorrelated Space Algorithm and Its Application to Face Recognition
原文传递
导出
摘要 不相关空间算法是一种基于 Fisher 准则求解不相关鉴别矢量集的快速算法,但应用在人脸识别中将遇到小样本问题.本文提出一种改进的不相关空间算法,较有效地解决这一问题.其思想是将原始数据空间降到一个低维的子空间,从而避免了总体散布矩阵奇异,并在理论上证明,在这个子空间中求解不相关鉴别矢量集等价于在原空间中求解不相关鉴别矢量集.另外根据散布矩阵的对称性,引入一种计算方法,进一步提高求解不相关鉴别矢量集的速度.最后,在人脸库上的实验结果验证该算法的有效性. Uncorrelated space algorithm based on the fisher criterion function is a fast method for extracting uncorrelated discriminant vectors, but it may have the small size sample problem when applied in face recognition. And thus an improved uncorrelated space algorithm is proposed. It effectively overcomes the small size sample problem. The main idea of the proposed algorithm is to map the original space into a low dimensional subspace, and then the singularity of the total-scatter matrix can be avoided in this low dimensional subspace. It is proved that the uncorrelated discriminant vectors derived in this low dimensional subspace are equal to those derived in the original space. In addition, according to the symmetry of scatter matrix, a fast method is introduced to further speed up the computation of uncorrelated discriminant vectors. Finally, the experimental results on facial databases demonstrate the effectiveness of the proposed algorithm.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2008年第5期615-620,共6页 Pattern Recognition and Artificial Intelligence
基金 中国博士后基金(No.20060400809) 黑龙江省青年科技基金(No.QC06C022)资助项目
关键词 不相关空间算法 不相关鉴别矢量集 小样本问题 总体散布矩阵 Uncorrelated Space Algorithm, Uncon'elated Discriminant Vectors, Small Size Sample Problem, Total-Scatter Matrix
  • 相关文献

参考文献11

  • 1Kirby M, Sirovich L. Application of the Karhunen-Loeve Procedure for the Characterization of Human Faces. IEEE Trans on Pattern Analysis and Machine Intelligence, 1990, 12( 1 ) : 103 -108 被引量:1
  • 2Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19 (7) : 711 -720 被引量:1
  • 3Jin Zhong, Yang Jingyu, Zhong Shanhu, et al. Face Recognition Based on the Uncorrelated Discrimination Transformation. Pattern Recognition, 2001, 34(7): 1405- 1416 被引量:1
  • 4杨静宇,金忠,胡钟山.具有统计不相关性的最佳鉴别特征空间的维数定理[J].计算机学报,2003,26(1):110-115. 被引量:9
  • 5Jing Xiaoyuan, Zhang D, Jin Zhong. UODV: Improved Algorithm and Generalized Theory. Pattern Recognition, 2003, 36 ( 11 ) : 2593 - 2602 被引量:1
  • 6吴小俊,杨静宇,王士同,Josef Kittler.广义统计不相关最优鉴别矢量集的一个理论结果[J].电子学报,2004,32(10):1720-1722. 被引量:4
  • 7Liang Zhizheng, Shi Pengfei. Uncorrelated Discriminant Vectors Using a Kernel Method. Pattern Recognition, 2005, 38 (2) : 307 - 310 被引量:1
  • 8陈绵书,陈贺新,刘伟.一种新的求解无相关鉴别矢量集方法[J].计算机学报,2004,27(7):913-917. 被引量:10
  • 9Yang Jing, Yang Jingyu. Why Can LDA be Performed in PCA Transformed Space? Pattern Recognition, 2003, 36 (2) : 563 - 566 被引量:1
  • 10Liu Ke, Cheng Yongqing, Yang Jingyu, et al. An Efficient Algorithm for Foley-Sammon Optimal Set of Discriminant Vectors by Algebraic Method. International Journal of Pattern Recognition and Artificial Intelligence, 1992, 6 ( 5 ) : 817 - 829 被引量:1

二级参考文献21

  • 1[4]Cheng Yong-Qing, Zhuang Yong-Ming, Yang Jing-Yu. Optimal Fisher discriminant analysis using the rank decomposition.Pattern Recognition, 1992, 25(1) :101~111 被引量:1
  • 2[5]Liu Kc, Cheng Yong-Qing, Yang Jing-Yu. A generalized optimal set of discriminant vectors. Pattern Recognition, 1992, 25(7):731~739 被引量:1
  • 3[10]Wilks S S. Mathematical Statistics. New York: Wiley, 1962 被引量:1
  • 4[11]Duda R O, Hart P E. Pattern Classification and Scene Analysis. New York: John Wiley & Sons, 1973 被引量:1
  • 5[12]Fukunaga K. Introduction to Statistical Pattern Recognition.New York: Academic Press, 1990 被引量:1
  • 6[1]Foley D H, Sammon J W Jr. An optimal set of discriminant vectors. IEEE Transactions on Computers, 1975, 24(3): 281~289 被引量:1
  • 7[2]DucheneJ, Leclercq S. An optimal transformation for discriminant and principal component analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988, 10(6): 978~983 被引量:1
  • 8[3]Hong Zi Quan, Yang Jing-Yu. Optimal discriminant plane for a small number of samples and design method of classifier on the plane. Pattern Recognition, 1991, 24(4):317~324 被引量:1
  • 9Liu Ke, Cheng Yong-Qing, Yang Jing-Yu. A generalized optimal set of discriminant vectors. Pattern Recognition, 1992, 25(7): 731~739 被引量:1
  • 10Jin Zhong, Yang Jing-Yu, Hu Zhong-Shan, Lou Zhen. Face recognition based on the uncorrelated discriminant transform. Pattern Recognition, 2001, 34(7): 1405~1416 被引量:1

共引文献18

同被引文献26

  • 1陈绵书,陈贺新,刘伟.一种新的求解无相关鉴别矢量集方法[J].计算机学报,2004,27(7):913-917. 被引量:10
  • 2郑宇杰,杨静宇,徐勇,於东军.一种基于Fisher鉴别极小准则的特征提取方法[J].计算机研究与发展,2006,43(7):1201-1206. 被引量:14
  • 3He X F, Yan SC, Hu Y, et al. Face recognition using Laplacianfaces [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence(S0162-8828), 2005, 27(3): 328-340. 被引量:1
  • 4He X F, Niyogi. Locality preserving projections [C]//Proceedings of Advances In Neural Information Processing Systems 16, MA: Cambridge, MITPress, June23-25, 2004: 153-160. 被引量:1
  • 5YONG Xu, FENG Xi-song, GE Feng, et al. A novel local preserving projection scheme for use with face recognition [J]. Expert Systems withApplieations(S0957-4174), 2010, 37(9): 6718-6721. 被引量:1
  • 6Nie F P, Xiang S M, Song Y Q, et al. Orthogonal locality minimizing globality maximizing projections for feature extraction [J]. Optical Engineering(S0091-3286), 2009, 48(1): 1-5. 被引量:1
  • 7Zhang L M, Qiao L S, Chen S C. Graph-optimized locality preserving projections [J]. Pattern Recognition(S0031-3203),2010, 43(6): 1993-2002. 被引量:1
  • 8Yang J, David Z, Yang J Y, et al. Globally Maximizing, Locally Minimizing: Unsupervised Discriminant Projection with Applications to Face and Palm Biometrics [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (S0162-8828), 2007, 29(4): 650-664. 被引量:1
  • 9Belhumeur P N, Hespanha J P, Kriegam D J. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence(S0162-8828), 1997, 19(7): 711-720. 被引量:1
  • 10Swets D L, Weng J. Using discriminant eigenfeatures for image retrieval [J]. IEEE Transactions on Pattern Analysis and Machinelntelligence(S0162-8828), 1996, 18(8): 831-836. 被引量:1

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部