期刊文献+

核不相关空间算法及其在人脸识别中的应用

Kernel Uncorrelated Space Algorithm and Its Application to Face Recognition
下载PDF
导出
摘要 不相关空间算法是求解不相关鉴别矢量集的快速算法,但是将其应用在人脸识别中将遇到小样本问题,并且算法只是一种线性的特征提取方法。该文提出一种核不相关空间算法,该方法的关键是高维特征空间中不相关空间的计算,对此提出一种简单的计算方法,即根据eigenface中将高阶矩阵计算转化成低阶矩阵计算的思想,将高维特征空间中不相关空间的计算仍归结为标准的特征值分解问题。所提出的算法能够有效地解决小样本问题。在ORL人脸库上的实验结果验证了所提出的算法的可行性和有效性。 Uncorrelated space algorithm is a fast method for the uncorrelated discriminant vectors extraction, but it may encounter the small size samples problem when it is applied to face recognition task. In addition, it is only a linear feature extraction technique. In this paper, kernel uncorrelated space algorithm is proposed. The key of the proposed algorithm is to how to compute the uncorrelated space in the higher dimensional feature space. As to this problem, a very simple and easy method is proposed, which originates from the eigenface that transforms the computation of the high order matrix into the computation of the low order matrix, and then the actual computation of the uncorrelated space in the higher dimensional feature space is reduced to a standard eignenvalue problem. In addition, the proposed algorithm can effectively overcome small size samples problem. The numerical experiments on facial databases of ORL show that the proposed method is effective and feasible.
出处 《电子与信息学报》 EI CSCD 北大核心 2009年第8期1812-1815,共4页 Journal of Electronics & Information Technology
基金 中国博士后基金(20060400809) 黑龙江省青年科技基金(QC06C022)资助课题
关键词 人脸识别 不相关空间算法 小样本问题 核不相关空间算法 Face recognition Uncorrelated space algorithm The small size samples problem Kernel uncorrelated space algorithm
  • 相关文献

参考文献10

  • 1Jin Z,Yang J,and Hu Z,et al..Face recognition based on the uncorrelated discrimination transformation[J].Pattern Recognition,2001,34(7):1405-1416. 被引量:1
  • 2陈绵书,陈贺新,刘伟.一种新的求解无相关鉴别矢量集方法[J].计算机学报,2004,27(7):913-917. 被引量:10
  • 3Scholkopf B,Smola A,and Müller K R.Nonlinear component analysis as a kernel eigenvalue problem[R].Max-Planck-Institut für biologische Kybernetik,Technical Report 44,1996. 被引量:1
  • 4Bach F R and Jordan M I.Kernel independent component analysis[R].Department of Computer Science,University of California,Technical Report UCB/CSD-01-1166,2001. 被引量:1
  • 5Mika S,Ratsch G,and Weston J,et al..Fisher discriminant analysis with kernels[C].Proceedings of IEEE International Workshop on Neural Networks for Signal Processing.Madison,Wisconsin,August 1999:41-48. 被引量:1
  • 6Yang J,Frangi A,and Yang J Y,et al..KPCA plus LDA:A complete kernel Fisher discriminant framework for feature extraction and recognition[J].IEEE Transactions on Pattern Analysis Machine Intelligence,2005,27(2):230-244. 被引量:1
  • 7梁志贞,施鹏飞.核不相关鉴别分析以及它在字符识别中的应用[J].计算机研究与发展,2006,43(1):132-137. 被引量:1
  • 8Turk M and Pentland A.Eigenfaces for recognition[J].Journal of Cognitive Neuroscience,1991,3(1):71-86. 被引量:1
  • 9Liu K and Yang J Y.An efficient algorithm for Foley-Sammon optimal set of discriminant vectors by algebraic method[J].International Journal of Pattern Recognition and Artificial Intelligence,1992,6(5):817-829. 被引量:1
  • 10Zheng W M and Zhao L.Foley-Sammon optimal discriminant vectors using kernel approach[J].IEEE Transactions on Neural Networks,2005,16(1):1-9. 被引量:1

二级参考文献4

  • 1Liu Ke, Cheng Yong-Qing, Yang Jing-Yu. A generalized optimal set of discriminant vectors. Pattern Recognition, 1992, 25(7): 731~739 被引量:1
  • 2Jin Zhong, Yang Jing-Yu, Hu Zhong-Shan, Lou Zhen. Face recognition based on the uncorrelated discriminant transform. Pattern Recognition, 2001, 34(7): 1405~1416 被引量:1
  • 3Kirby M., Sirovich L.. Application of Karhunen-Loeve procedure for characterization of human faces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(1: 103~108 被引量:1
  • 4杨静宇,金忠,胡钟山.具有统计不相关性的最佳鉴别特征空间的维数定理[J].计算机学报,2003,26(1):110-115. 被引量:9

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部