期刊文献+

基于核映射的无相关鉴别矢量集算法 被引量:2

Kernel mapping based algorithm for uncorrelated discriminant vectors set
下载PDF
导出
摘要 针对人脸识别这一非线性分类问题,提出了一种基于核的无相关鉴别矢量集算法。应用了支持向量机中核函数的思想,通过核映射将原空间的非线性分类问题转化为特征空间的线性分类问题,然后在特征空间进行无相关鉴别矢量集的求取。其优势在于:利用核函数不但可以将非线性问题转化为线性问题,而且可以提取样本图像的高阶统计特征。在ORL人脸库中的测试结果表明,与传统的全局正交鉴别矢量集算法及传统的无相关鉴别矢量集算法相比,基于核映射的无相关鉴别矢量集算法有更高的识别率,最高识别率可达到99%。 An algorithm for the uncorrelated discriminant vectors set based on the kernel mapping was proposed to solve the nonlinear classification problem of the face recognition. Applying the concept of the kernel function in the supporting vector machine, the nonlinear classification problem in the original space was transformed to the linear classification problem in the feature space by the kernel mapping, and the uncorrelated discriminant vectors set was solved in the feature space. The advantage of the algorithm consists in that the nonlinear problem can be transformed to the linear one, and the high order statistical features among the pixels of the face image can be extracted at the same time. The experiments in the ORL face database showed that the proposed algorithm is characterized by a higher recognition rate than the traditional algorithms for the global orthogonal and the uncorrelated discriminant vectors sets, and the highest recognition rate may reach 99%.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2006年第4期574-578,共5页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金资助项目(60372060) 科技部国际合作计划项目(2005DFA10300)
关键词 信息处理技术 人脸识别 Fisher无相关鉴别矢量集 核映射 information processing face recognition Fisher uncorrelated set of discriminant vectors kernel mapping
  • 相关文献

参考文献8

  • 1Foley D H,Sammon J W.An optimal set of discriminant vetors[J].IEEE Trans Comput,1975,24(3):281-289. 被引量:1
  • 2Guo Yue-fei,Li Shi-jin,Yang Jing-yu,et al.A generalized Foley-Sammon transform based on generalized Fisher discriminant criterion and its application to face recognition[J].Pattern Recognition Letters,2003,24:147-158. 被引量:1
  • 3Jin Zhong,Yang Jing-yu,Hu Zhong-shan,et al.Face recognition based on the uncorrelated discriminant transformation[J].Face Recognition,2001,34:1405-1416. 被引量:1
  • 4陈绵书,陈贺新,刘伟.一种新的求解无相关鉴别矢量集方法[J].计算机学报,2004,27(7):913-917. 被引量:10
  • 5Schoelkopf B,Smola A J,Mueller K R.Nonlinear component analysis as a kernel eigenvalue problem[J].Neural Computation,1998,10:1299-1319. 被引量:1
  • 6Mika S,Raestch G.Westen J,et al.Fisher discriminant analysis with kernels[J].Neural Networks for Signal Processing,1999,9:41-48. 被引量:1
  • 7Mika S,Smola A J,Schoelkopf B.An improved training algorithm for Fisher kernel discriminants[C] //Proc Artificial Intelligence and Statistics,AISTATS '01(Jaakkaola T and Richardson Teds),2001:98-104. 被引量:1
  • 8Mika S,Raestch G,Westen J,et al.Invariant feature extraction and classification in kernel spaces[J].Neural Information Processing Systems,2000,12:526-532. 被引量:1

二级参考文献4

  • 1Liu Ke, Cheng Yong-Qing, Yang Jing-Yu. A generalized optimal set of discriminant vectors. Pattern Recognition, 1992, 25(7): 731~739 被引量:1
  • 2Jin Zhong, Yang Jing-Yu, Hu Zhong-Shan, Lou Zhen. Face recognition based on the uncorrelated discriminant transform. Pattern Recognition, 2001, 34(7): 1405~1416 被引量:1
  • 3Kirby M., Sirovich L.. Application of Karhunen-Loeve procedure for characterization of human faces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(1: 103~108 被引量:1
  • 4杨静宇,金忠,胡钟山.具有统计不相关性的最佳鉴别特征空间的维数定理[J].计算机学报,2003,26(1):110-115. 被引量:9

共引文献9

同被引文献11

  • 1陈绵书,陈贺新,刘伟.一种新的求解无相关鉴别矢量集方法[J].计算机学报,2004,27(7):913-917. 被引量:10
  • 2Turk M A,Pentland A.Eigenfaces for recognition[J].Journal of Cognitive Neuroscience,1991,3(1):71-86. 被引量:1
  • 3Belhumeur P N,Hespanha J P,Kriengman D J.Eigenfaces vs.Fisherfaces:recognition using class specific linear projection[J].IEEE Trans on PAMI,1997,19(7):711-720. 被引量:1
  • 4Lai J H,Yuen P C,Feng G C.Spectroface:a Fourier-based approach for human face reognition[C]//Proceeding of the Second International Conference on Multimodal Interface,Hong Kong,1999,6:115-120. 被引量:1
  • 5Lai J H,Yuen P C,Feng G C.Face recognition using holistic Fourier invariant features[J].Pattern Reconition,2001,34(1):95-109. 被引量:1
  • 6Fukunaga K.Introduction to Statistical Pattern Recognition[M].New York:Academic Press,Ine.,1990. 被引量:1
  • 7Jin Zhong,Yang Jing-yu,Hu Zhong-shan,et al.Face recognition based on the uncorrelated discriminant transformation[J].Face Recognition,2001,34:1405-1416. 被引量:1
  • 8Schoelkopf B,Smola A J,Mueller K R.Nonlinear component analysis as a kernel eigenvalue problem[J].Neural Computation,1998,10:1299-1319. 被引量:1
  • 9Mika S,Raestch G,Westen J,et al.Fisher discriminant analysis with kernels[J].Neural Networks for Signal Processing,1999,9:41-48. 被引量:1
  • 10Mika S,Smola A J,Schoelkopf B.An improved training algorithm for fisher kernel discriminants[C]//Proc Artificial Intelligence and Statistics,2001,(AISTATS'01),Jaakkaola T and Richardson T,eds,2001:98-104. 被引量:1

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部