期刊文献+

基于IMM多传感器顺序粒子滤波跟踪机动目标算法 被引量:5

Maneuvering target tracking algorithm based on IMM multi-sensor sequential particle filtering
下载PDF
导出
摘要 针对交互式多模型粒子滤波在跟踪机动目标时精度受限问题,提出一种基于交互式多模型(IMM)的多传感器顺序粒子滤波算法。采用IMM机制实现目标运动模式的确认;在合理利用单传感器量测和多传感器量测中冗余和互补信息的基础上,引入顺序重抽样方法改善粒子分布,并将改善后的粒子应用于IMM粒子滤波算法框架。仿真实验结果表明:新算法能够估计出强机动目标状态,且精度明显优于标准IMM粒子滤波算法。 Aiming at the precision of the interacting multiple models(IMM) with particle filtering is restricted in tracking maneuvering target,a new IMM which adopts the multi-sensor sequential particle filtering algorithm is proposed.In the novel algorithm,the IMM mechanism is used to confirm the motion pattern of target.Based on utilization of the redundancy and complementary measurement information from the single sensor and multi-sensor,a sequential re-sampling method is used to optimize the distribution of particles and integrated into the IMM with particle filtering.Simulation results show that the new algorithm can estimate the state of the maneuvering target well and is superior to the standard IMM with particle filtering algorithm in the precision.
出处 《传感器与微系统》 CSCD 北大核心 2012年第4期130-132,136,共4页 Transducer and Microsystem Technologies
基金 国家自然科学基金资助项目(60974062) 河南省基础与前沿研究计划资助项目(112300410117) 河南省高等学校青年骨干教师计划资助项目(2010GGJS-041)
关键词 多源信息融合 机动目标跟踪 交互式多模型 粒子滤波 multi-source information fusion maneuvering target tracking interacting multiple models(IMM) particle filtering
  • 相关文献

参考文献7

二级参考文献73

共引文献65

同被引文献47

  • 1李辉,沈莹,张安,程琤.交互式多模型目标跟踪的研究现状及发展趋势[J].火力与指挥控制,2006,31(11):1-4. 被引量:26
  • 2赵海艳,陈虹.具有未知干扰输入系统的滚动时域估计[J].电机与控制学报,2007,11(2):178-182. 被引量:1
  • 3MURAT E, DEREK P A. Maneuvering Target Tracking with an Adaptive Kalman Filter[C]//IEEE Conference on Decision & Control.1998: 737-742. 被引量:1
  • 4WANG D, CHENG C, ZHAO K. Study on Algorithm of EFK in CA Model for Bearing-Only Target Tracking [C]// International Conference on System of Systems Engineering. 2012: 244-246. 被引量:1
  • 5JULIER S J, UHLMANN J K. UnscentedFiltering and Non- linear Estimation [J]. Proceeding of the IEEE, 2004, 92(3) : 401-422. 被引量:1
  • 6ANDRIEU C, DOUCET A. Particle Filtering for Partially Observed Gaussian State Space Model [J]. Journal of Royal Statistical Society-Series B, 2002, 64(4): 827-836. 被引量:1
  • 7LI X R, JILKOV V P. Survey of Maneuvering Target Track- ing- Part V: Multiple-Model Methods [C]//IEEE Trans- actions on Aerospace And Electronic Systems. 2005: 1255- 1321. 被引量:1
  • 8MAZOR E, AVERBICJ A, BAR-SHALOM Y, et al. Inter actingMultiple Model Methods in Target Tracking: A Survey [J]. IEEE Transactions on Aerospace& Electronic Systems,1998, 34(1): 103-123. 被引量:1
  • 9FOO P H, NG G W. Combining the Interacting Multiple Model Method with Particle Filters for Maneuvering Target Tracking [J]. let Radar Sonar &Navigation, 2011, 5(3): 234-255. 被引量:1
  • 10FOO P H. Combining theInteracting Multiple Model Method with Particle Filters for Manoeuvring Target Tracking with a Multi Static Radar System [J]. let Radar Sonar Navigation, 2011, 5(7): 697-706. 被引量:1

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部